

Limerick and Shannon Metropolitan Area Transport Strategy

Demand Analysis Report

July 2020

National Transport Authority, Dun Scèine, Harcourt Lane, Dublin 2.

Document Identification Table	
Client / Project Owner	National Transport Authority
Document Title	Demand Report
Task Order	
Task	Limerick and Shannon Metropolitan Area Transport Strategy
Deliverable Code	
Version	V4.0
Document Status	Draft

Document Status Tables

Version 1

	Name	Position	Date
Originated by	Marjely Caneva	Transport Planner	17/04/2019
Checked by	Allanah Murphy	Principal Consultant	9/06/2019
Checked By	Paul Hussey	Associate Transport Planner	10/06/2019
Approved by	Kevin Burke	Principal Transport Planner	18/06/2019
NTA Review			

Version 2

	Name	Position	Date
Originated by	Kevin Burke	Principal Transport Planner	18/07/2019
Checked by			
Approved by			
NTA Review			

Version 3

	Name	Position	Date
Originated by	Allanah Murphy	Principal Consultant	8/11/2019
Checked by			
Approved by			
NTA Review			

Version 4

	Name	Position	Date
Originated by	Allanah Murphy	Principal Consultant	13/07/2020
Checked by	Paul Hussey	Associate Director	13/07/2020
Approved by	John Paul Fitzgerald	Project Manager	13/07/2020
NTA Review			

CONTENTS

CC	ONTEN	NTS	i
1	Intro	duction	2
	1.1 1.2 1.3	Background Purpose of this Report Report Structure	2 2 3
2	Plan	ning Data Section	4
	2.1 2.2 2.3	Overview 2040 Planning Datasheet Summary Settlement Level Comparison	4 4 6
3	NTA	Regional Modelling System	13
	3.1 3.2 3.3 3.4	Introduction Regional Modelling System Dimensions MWRM Structure Suitability of Mid-West Regional Model in Developing the Strategy	13 15 18 27
4	Mod	elled Scenario Comparison	30
	4.1 4.2 4.3	Introduction Transport Demand Characteristics Transport Demand Movement Patterns	30 30 36
5	Corri	dor Analysis	40
	5.1 5.2 5.3	Overview Corridor Comparison Activity Density	40 41 49
6	Com	bined Demand Analysis	53
	6.1 6.2 6.3 6.4	Desire Line Analysis Spider Web Analysis Indicative Public Transport Network HGV Demand Analysis	53 55 60 62

1 Introduction

1.1 Background

The National Transport Authority (NTA) is a public body set up under statute and established in December 2009. The role and functions of the NTA are set out in three Acts of the Oireachtas; the Dublin Transport Authority Act 2008, the Public Transport Regulation Act 2009 and the Taxi Regulation Act 2013. In August 2015, the Department of Transport, Tourism and Sport (DTTaS) published its policy document *"Investing in our Transport Future - Strategic Investment Framework for Land Transport"*. Action 4 of that framework states that: *"Regional transport strategies will be prepared by the NTA and provide an input to regional spatial and economic strategies"*.

Having regard to its role in relation to transport, and the action placed upon it in the DTTaS policy document, the NTA, in collaboration with Limerick City and County Council and Clare County Council, is developing a Transport Strategy for the Limerick and Shannon Metropolitan Area (L-SMATS henceforth) covering the period up to 2040.

L-SMATS is a Regional Level and is directly informed by National Level (Tier -1) policies; the most important of these being are the National Planning Framework (NPF) 2040 and the National Development Plan 2018-2027, both of which were published in February 2018. The strategy will provide a framework for the planning and delivery of transport infrastructure and services in the L-SMA over the next two decades. It will also provide a planning policy for which other agencies can align their future policies and infrastructure investment.

1.2 Purpose of this Report

The methodology for the development of the L-SMA Transport Strategy 2040 is undertaken on a step by step basis, from: reviewing the existing policy and transport baseline, undertaking a detailed future demand analysis, developing transport options, developing the draft Strategy for public consultation and subsequently finalising the Strategy. Figure 1-1 outlines the proposed methodology.

Figure 1-1: Limerick and Shannon Metropolitan Area Transport Strategy Methodology

This Report is concerned with second task in the preparation of the Strategy - an assessment of the travel demand within the L-SMA in 2040. The report outlines the methodology adopted to estimate future land use

within the L-SMA. Two initial model runs have been undertaken for this land use scenario using the NTA's Mid-West Regional Model (MWRM) to assess the likely future 2040 travel demand.

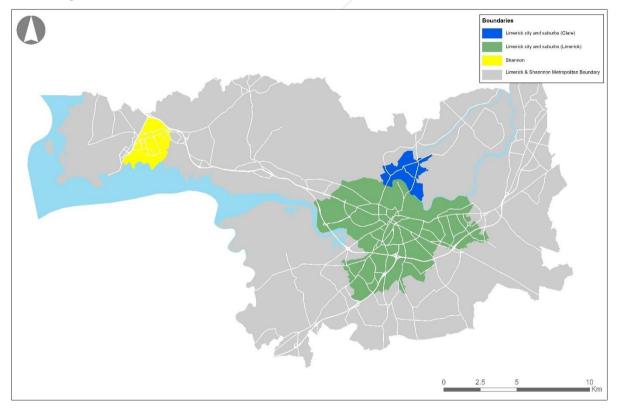
The aim of this stage of the Strategy is to establish a thorough understanding of the future travel demand and movement patterns to inform the development of transport options, network and supporting proposals for further testing. The demand and movement patterns have been assessed using individual and combined corridor analysis, the details of which are outlined in this report.

1.3 Report Structure

The following provides a description of the contents of each section of the report;

- Section 2: Outline of the estimated 2040 modelled land use data;
- Section 3: Overview of the NTA modelling system and how travel demand is generated from the 2040 land use data;
- Section 4: Comparison of the high-level results from the two scenarios modelled using the 2040 travel demand;
- Section 5: Detailed analysis of the future travel demand at a corridor level for the idealised network scenario;
- Section 6: Summary of the combined demand from all corridors and the indicative strategic network required to meet this demand.

2 Planning Data Section


2.1 Overview

In March 2019, the NTA, in association with Limerick City and County Council (LCCC) and Clare County Council (CCC) prepared an initial Planning Datasheet for the 2040 Baseline Land-use Scenario for the application within the L-SMA Transport Strategy. This Planning Datasheet has been used for the purpose of the following analysis.

The Planning Datasheet contains data at a CSO Small Area (SA) level on population, employment and education. This section provides a summary of the 2040 Planning Sheet demographics at a city, county, metropolitan and settlement level and the growth from 2016-2040.

2.2 2040 Planning Datasheet Summary

The sections below present population, employment and education numbers for the derived 2040 Baseline Land Use Scenario at a high level for Counties Limerick & Clare, Limerick & Shannon Metropolitan Area (L-SMA) and CSO Limerick City and Suburbs Boundary. Comparison between 2016 and 2040 scenario are also made to present the growth between the two scenarios. The areas within the metropolitan area are shown below in Figure 2-1.

Figure 2-1: Limerick City & Suburbs & Shannon Area Boundaries

It should be noted the initial planning datasheet developed by the NTA to inform the demand analysis was developed prior to the finalisation of the Regional Spatial and Economic Strategy (RSES). An updated planning datasheet was developed in the latter stages of the project to reflect the projections outlined in the RSES. This planning sheet was used in the optioneering and strategy appraisal stages and therefore the demographics presented in this report differ from those presented in Options Development Report and Modelling Report.

2.2.1 Population

Table 2-1 provides a comparison between the 2016 and the 2040 Planning Datasheets for the areas defined by the NTA. The table presents a proportional higher growth within the CSO defined Limerick City & Suburbs than in Limerick City & County and County Clare with a significant population increase within urban areas.

Within the remaining Metropolitan Area, there are significant population increases close to the existing City & Suburbs in areas such as Mungret, Annacotty & the proposed South Clare Economic Strategic Development Zone (SDZ) which lie immediately outside the existing CSO city boundaries. Approximately a third of all growth projected for County Clare lies within this proposed SDZ.

Table 2-1: Population Compariso	n
---------------------------------	---

Country	Population		Population Growth	
County	2016	2040	2016 t	o 2040
Limerick City & County	194,899	261,475	66,576	34%
Clare County	118,817	151,000	32,183	27%
Metropolitan Areas				
L-SMATS Area	132,420	209,198	76,778	58%
-Limerick City & Suburbs	94,177*	143,723	49,546	53%
-Limerick City & Suburbs (Limerick)	89,201	138,645	49,444	55%
-Limerick City & Suburbs (Clare)	4,976	5,079	103	2%
-Shannon	10,442	13,600	3,158	30%
-Remaining Metropolitan Area	27,801	51,875	24,074	87%

It should be noted that the CSO Limerick City & Suburbs boundary does not align with the boundaries of CSO Small Areas. For the purposes of this comparison the population by SA was needed to compare to 2040. Thus, the population figure given is marginally lower than the official Census population for Limerick City and Suburbs (94,192).

2.2.2 Employment

Table 2-2 provides a comparison between the 2016 and the 2040 Planning Datasheets for the areas defined by the NTA. Overall employment grows at a higher rate than population as the age profile and work force size increases. A higher proportion of growth is concentrated within the Limerick City & Suburbs area. As with the population growth, the high level of growth in the remaining metropolitan area is driven primarily by significant levels of employment growth in Mungret & the South Clare Economic SDZ.

Country	Employment		Employment Growth	
County	2016	2040	2016 t	o 2040
Limerick City & County	63,434	93,566	30,132	48%
Clare County	30,914	42,372	11,458	37%
Metropolitan Areas				
L-SMATS Area	60,097	94,903	34,806	58%
-Limerick City & Suburbs	43,241	64,280	21,039	49%
-Limerick City & Suburbs (Limerick)	42,892	63,907	21,015	49%
-Limerick City & Suburbs (Clare)	349	374	25	7%
-Shannon	10,701	13,273	2,572	24%
-Remaining Metropolitan Area	6,155	17,350	11,195	182%

Table 2-2: Job Comparison

2.2.3 Education

Table 2-3 provides a comparison between the 2016 and the 2040 Planning Datasheets for education places which includes primary, secondary and tertiary education.

Table 2-3: Education Comparison

Country	Education		Education Growth	
County	2016	2040	2016 t	o 2040
Limerick City & County	49,211	65,275	16,064	33%
Clare County	19,936	25,247	5,311	27%
Metropolitan Areas				
L-SMATS Area	37,911	55,588	17,678	47%
-Limerick City & Suburbs	31,284	44,284	13,000	42%
-Limerick City & Suburbs (Limerick)	31,013	43,976	12,963	42%
-Limerick City & Suburbs (Clare)	271	308	37	14%
-Shannon	2,583	3,184	601	23%
-Remaining Metropolitan Area	2,936	6,257	3,321	113%

2.3 Settlement Level Comparison

The sections below present population, job and education numbers for the 2040 Baseline Land Use Scenario at a more granular detail, showing the distribution of growth at a settlement level. Comparison between the 2016 base and the 2040 scenario are also made to present the growth between the two scenarios.

2.3.1 Limerick City and County and Clare County Settlements

The population, employment and education data at its most disaggregated form consists of 1,566 Census Small Areas (CSAs) for the MWRM. In the interest of simplicity these CSAs were grouped into specific settlements that allowed for sensible analysis of these locations. The settlements do not match Electoral District boundaries but are defined based on a best match between the Mid-West Regional Model Zoning System and the planning data at a CSA level. Additional growth is added at a settlement level in order to test future year scenarios. The settlements are illustrated in Figure 2-2.

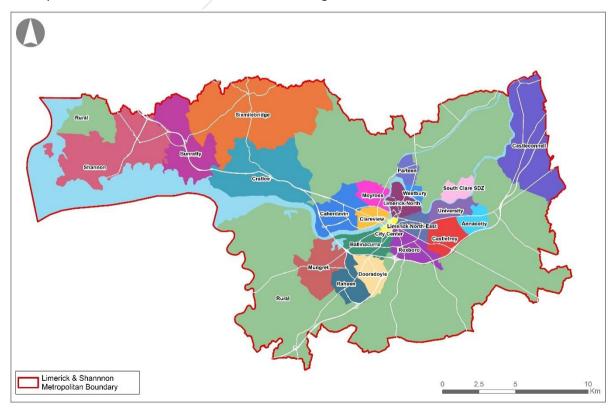


Figure 2-2: Metro Area Settlements

2.3.2 Population

Table 2-4 provides a comparison between the 2016 and the 2040 Planning Datasheets at a settlement level for population. As shown, significant levels of population growth are planned for the proposed South Clare Economic SDZ & Mungret with areas adjacent to the City such as Ballinacurra, Caherdavin, Raheen and Annacotty also experiencing high population growth.

	Population		Population Growth	
Metro Settlements	2016	2040	2016 to 2040	2016 to 2040 %
Annacotty	5,497	9,455	3,958	72%
Ballinacurra	6,956	15,187	8,231	118%
Bunratty	983	961	-22	-2%
Caherdavin	5,487	14,148	8,661	158%
Castleconnell	3,332	5,827	2,495	75%
Castletroy	5,998	9,817	3,819	64%
City Centre	6,071	9,263	3,192	53%
Clareview	7,035	8,941	1,906	27%
Cratloe	1,514	1,511	-3	0%
Dooradoyle	13,350	13,963	613	5%
Limerick North	6,803	10,062	3,259	48%
Limerick North-East	12,344	14,694	2,350	19%
Moyross	6,918	9,342	2,424	35%
Mungret	1,259	6,650	5,391	428%
Parteen	1,061	1,089	28	3%
Raheen	3,446	7,449	4,003	116%
Roxboro	7,774	11,279	3,505	45%
Rural	15,887	23,977	8,090	51%
Shannon	10,028	13,220	3,192	32%
Sixmilebridge	3,962	4,022	60	2%
South Clare Economic SDZ	379	11,000	10,621	2802%
University	2,963	3,963	1,000	34%
Westbury	3,373	3,379	6	0%
Total	132,420	209,198	76,778	58%

Table 2-4: Population Comparison at a Settlement Level

The population growth distribution between 2016 and 2040 is shown for each small area in Figure 2-3 andshows the high levels of growth in areas adjacent to the city centre as population intensifies in suburbanareas.There is also considerable population growth within Shannon.

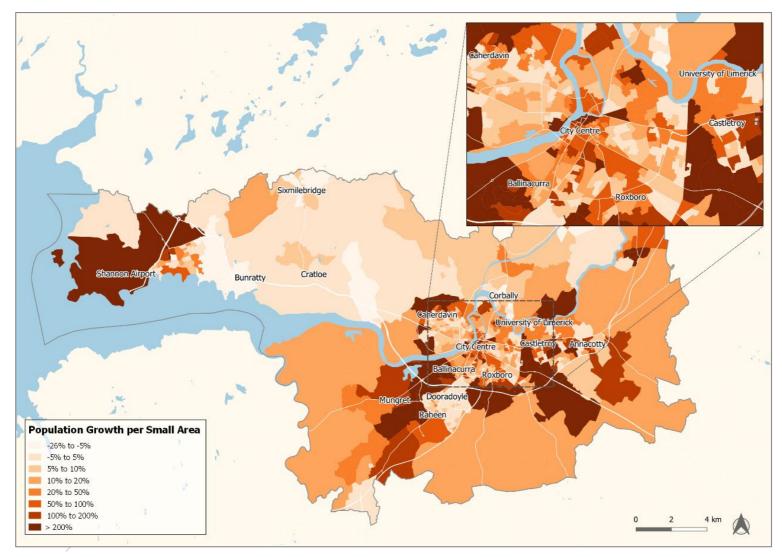


Figure 2-3: Population Growth 2016 to 2040

2.3.3 Employment

Table 2-5 provides a comparison between the 2016 and the 2040 Planning Datasheets at a settlement level for employment. The greatest absolute growth is seen in Ballinacurra which includes the Limerick Docklands. There is also significant employment growth within the City Centre, Mungret, Shannon and the proposed South Clare Economic SDZ.

Table 2-5: Job	Comparison at	a Settlement Level
----------------	----------------------	--------------------

Metro Settlements	Popu	lation	Population Growth		
	2016	2040	2016 to 2040	2016 to 2040 %	
Annacotty	1,783	2,174	391	22%	
Ballinacurra	3,140	12,135	8,995	286%	
Bunratty	457	597	140	31%	
Caherdavin	849	2,437	1,588	187%	
Castleconnell	313	301	-12	-4%	
Castletroy	900	1,725	825	92%	
City Centre	9,282	15,009	5,727	62%	
Clareview	1,556	1,568	12	1%	
Cratloe	183	268	85	46%	
Dooradoyle	5,508	5,883	375	7%	
Limerick North	1,459	1,723	264	18%	
Limerick North-East	3,066	5,466	2,400	78%	
Moyross	1,477	1,536	59	4%	
Mungret	296	4,704	4,408	1489%	
Parteen	137	169	32	24%	
Raheen	5,421	5,674	253	5%	
Roxboro	3,765	6,024	2,259	60%	
Rural	3,747	4,243	496	13%	
Shannon	10,512	13,086	2,574	24%	
Sixmilebridge	247	303	56	23%	
South Clare Economic SDZ	73	3,535	3,462	4743%	
University	5,774	6,244	470	8%	
Westbury	152	101	-51	-34%	
Total	60,097	94,903	34,806	58%	

The job growth distribution between 2016 and 2040 is represented by CSO small area in Figure 2-4.

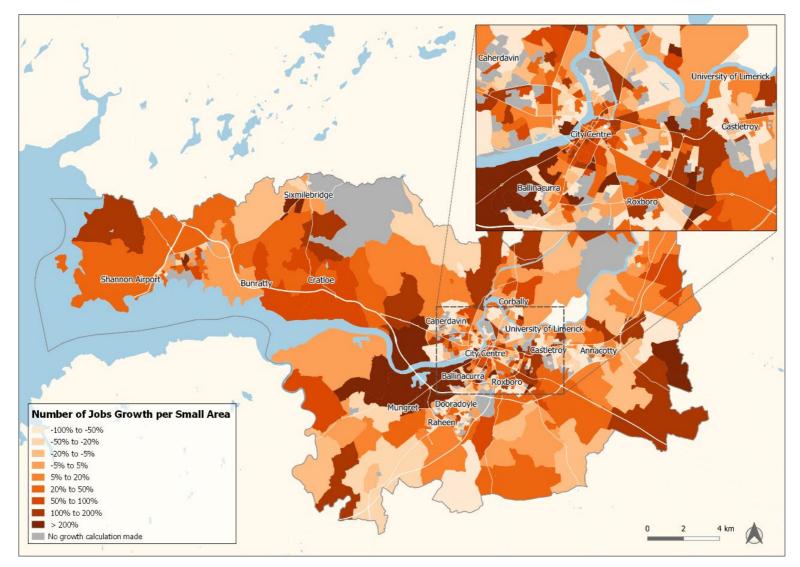


Figure 2-4: Job Growth 2016 to 2040

2.3.4 Education

Table 2-6 provides a comparison between the 2016 and the 2040 Planning Datasheets at a settlement level for education. As before, there is significant growth in education places in the Limerick Suburbs and areas with significant population growth forecast such as Mungret and the proposed South Clare SDZ.

Metro Settlements	Popul	lation	Populatio	on Growth
	2016	2040	2016 to 2040	2016 to 2040 %
Annacotty	1,036	1,748	712	69%
Ballinacurra	5,286	7,209	1,923	36%
Bunratty	131	147	15	12%
Caherdavin	484	2,024	1,541	318%
Castleconnell	196	655	459	234%
Castletroy	761	1,542	781	103%
City Centre	864	1,726	861	100%
Clareview	2,048	2,339	291	14%
Cratloe	258	266	7	3%
Dooradoyle	1,662	1,875	213	13%
Limerick North	2,469	3,102	633	26%
Limerick North-East	1,919	2,627	708	37%
Moyross	3,793	5,047	1,253	33%
Mungret	142	1,105	963	677%
Parteen	269	274	5	2%
Raheen	706	1,414	708	100%
Roxboro	1,833	2,498	666	36%
Rural	2,171	3,514	1,343	62%
Shannon	2,583	3,171	588	23%
Sixmilebridge	379	404	25	7%
South Clare Economic SDZ	1	1,709	1,708	169323%
University	8,916	11,169	2,253	25%
Westbury	2	25	23	1128%
Total	37,911	55,588	17,678	47%

As many small areas have no schools the education absolute growth rather than percentage growth in education places between 2016 and 2040 is represented in Figure 2-5.

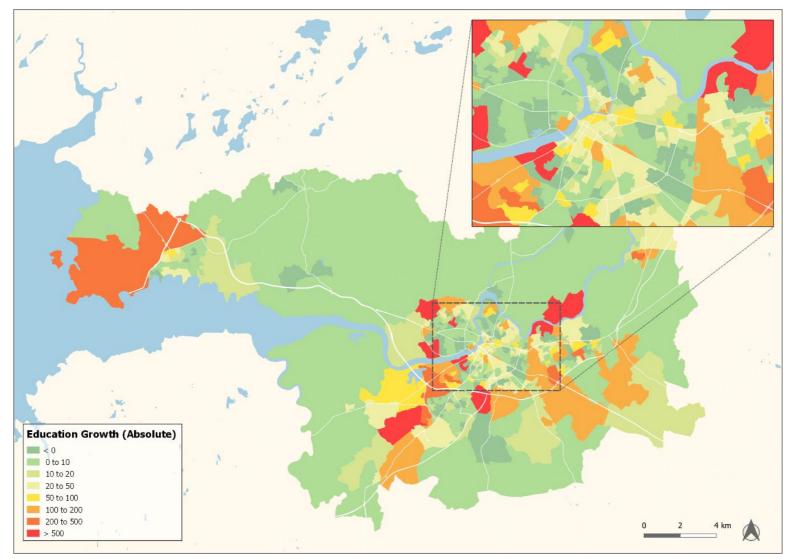


Figure 2-5: Education Growth 2016 to 2040

3 NTA Regional Modelling System

3.1 Introduction

This section describes the NTA Regional Modelling System, outlining its scope, extent, components, functionality and its suitability for use in developing the L-SMA Transport Strategy. The national remit of the NTA uses a system of regional models to help it deliver on its planning and appraisal needs. The NTA Regional Modelling System comprises five regional transport models covering the Republic of Ireland and centred on the five main cities of Dublin, Cork, Galway, Limerick, and Waterford and are summarised in Table 3-1 below.

Table 3-1: Regional Modelling System

Regional Modelling System	Abbreviation	Counties Covered
Eastern Regional Model	ERM	Louth, Monaghan, Cavan, Longford, Westmeath, Meath, Offaly, Laois, Kildare, Dublin, Wicklow, Carlow & Northern Wexford
South East Regional Model	SERM	Wexford, Kilkenny, Waterford & Tipperary South
South West Regional Model	SWRM	Cork & Kerry
Mid-West Regional Model	MWRM	Limerick, Clare & North Tipperary
Western Regional Model	WRM	Galway, Mayo, Roscommon, Sligo, Donegal & Leitrim

Each regional model has the following key attributes:

- Full geographic coverage of the relevant region;
- A detailed representation of the road network, particularly the impact of congestion on on-street public transport services and include modelling of residents' car trips by time period from origin to destination;
- A detailed representation of the public transport network & services, and can predict demand on the different public transport services within the regions;
- A representation of all major transport modes including active modes (walking and cycling) and includes accurate mode-choice modelling of residents;
- A detailed representation of travel demand, e.g. by journey purpose, car ownership/availability, mode of travel, person types, user classes & socio-economic classes, and representation of four-time periods (AM, Inter-Peak, PM and Off-Peak); and
- A prediction of changes in trip destination in response to changing traffic conditions, transport provision and/or policy.

The Mid-West Regional Model (MWRM), which covers Limerick City & County and Clare County, has been used to support the development of the L-SMA Transport Strategy. Figure 3-1 on the following page illustrates the geographical extent of each of the Regional Models.

Figure 3-1: Modelling System Regional Model Areas

3.2 Regional Modelling System Dimensions

The regional modelling system features or dimensions are defined in terms of:

- Zone system;
- Modes of travel represented;
- Base year;
- Time-periods; and
- Demand segmentation;

3.2.1 Zone System

The zone system definitions for each of the regional models were based on Census Small Area (CSA) boundaries and Electoral Districts (EDs). The 2016 CSAs are the core base layer for each zoning system. CSAs are the smallest geographic unit of data available with which to define the model zone system. Each CSA is a defined geographic area associated with demographic data (e.g. population, age distribution, employment status), and the work / school travel characteristics of the population (via *Place of Work, School or College - Census of Anonymised Records* (POWSCAR)).

CSAs are subsets of EDs. ED boundaries are commonly used as the unit of geographic information in Ireland and as such it was desirable to maintain a transparent relationship between EDs and the model zone system. Regional Model zones can be smaller or larger than either of these units where required.

The criteria used for developing zone boundaries for the MWRM and other regional models included:

- Population, Employment and Education maximum values were specified for zone population, number of jobs and persons in education;
- Activity Levels limits were applied to zone activity levels ensuring that zones with either very low, or very high, levels of trips were not created;
- Intra-zonal Trips threshold values were applied to the proportion of intra-zonal trips, within each zone, to avoid an underestimation of flow, congestion and delay on the network;
- Land Use zones were created with homogeneous land use and socio-economic characteristics where possible;
- Zone Size/Shape thresholds were applied to zone size, and irregularity of shape, to avoid issues with inaccurate representation of route choice;
- Political Geography as mentioned above, it is possible to aggregate all zones to ED level i.e. zone boundaries do not intersect ED boundaries;
- Special Generators/Attractors large generators/attractors of traffic such as Airports, Hospitals, shopping centres etc. were allocated to separate zones.

The MWRM zone system includes a total of 456 zones with a geographical breakdown as follows:

- Limerick City zones: 94;
- Limerick County zones: 126;
- Clare County zones: 131;
- North Tipperary County: 77;
- External zones: 26; and.
- Special zones: 2.

Figure 3-2 shows the MWRM Zone System. External zones represent national demand from areas across the country to/ from the Mid-West (area shown in blue). The two special zones in the model are Foynes Port & Shannon Airport. Further information on the MWRM Zone System can be found in the MWRM zone system development report¹

¹ MWRM Zone System Development Report: https://www.nationaltransport.ie/wpcontent/uploads/2018/06/MWRM_Zone_System_Development_Report-1.pdf

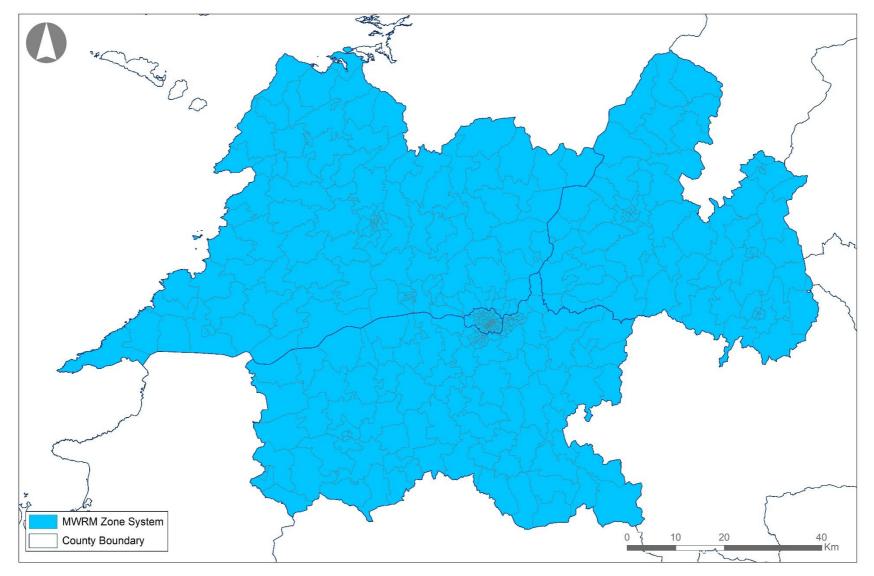


Figure 3-2: MWRM Zone System

3.2.2 Modes of Travel

The regional model system covers all surface access modes for personal travel and goods vehicles:

- Private vehicles taxis and cars;
- Public transport bus, rail, Luas, BRT, Metro;
- Active modes walking and cycling; and
- Goods vehicles light goods vehicles and heavy goods vehicles.

3.2.3 Base Year

The current release version of the MWRM is calibrated to the 2012 Census Data. An update of the model to a 2016 base is currently underway at the time of writing. All data presented in this section of the report has been extracted from the 2012 base year model which has been calibrated to data from the 2012 NHTS and 2012 Census as well as traffic counts and public transport count data. For the purpose of this assessment, the road and public transport networks have been updated to 2016. In addition, the demand used in the assessment utilises the latest available 2016 census data on population and social demographics at a CSO Small Area level.

3.2.4 Time Periods

The model represents an average weekday. The day is split into five-time periods considered within each of the regional models, detailed in Table 3-2 below. The periods allow the relative difference in travel cost between time periods to be represented. Representative peak hours are used in the assignment models, which are based on period to peak hour factors derived for each time period and mode. The peak hour factors are derived from survey count data for each time period to represent the 'busiest' hour within the full demand period.

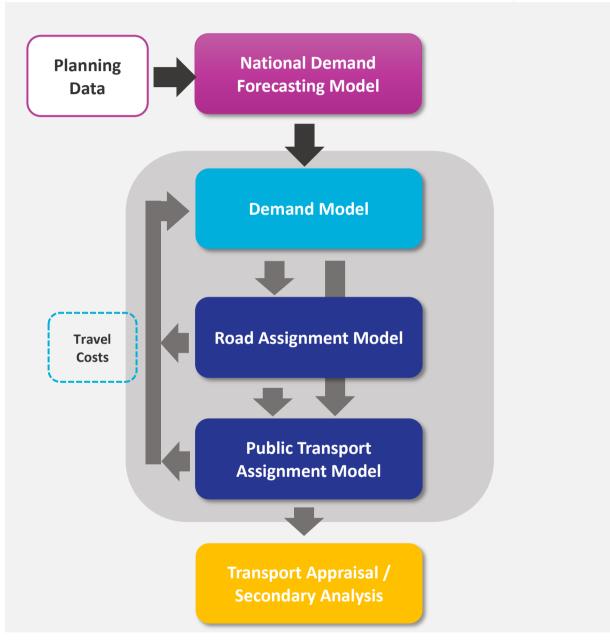

Period	DEMAND MODEL FULL PERIOD	ASSIGNMENT PERIOD
AM Peak	07:00-10:00	Peak hour – based on a Peak Hour factor of 0.393 for cars, 0.393 for active modes and 0.47 for public transport
Morning Inter Peak (IP1)	10:00-13:00	Average hour from full period - based on a Peak Hour factor of 0.33 for cars, 0.33 for active modes and 0.33 for public transport
Afternoon Inter Peak (IP2)	13:00-16:00	Average hour from full period (not assigned)
PM Peak	16:00-19:00	Peak hour - based on a Peak Hour factor of 0.358 for cars, 0.358 for active modes and 0.4 for public transport
Off Peak	19:00-07:00	Free flow assignment

Table 3-2: Time Periods

3.3 MWRM Structure

3.3.1 Overarching Structure

As mentioned above, the MWRM is the model used to support the development of the L-SMA Transport Strategy. All the regional models, including the MWRM, include 3 core modelling processes (i.e. Demand Model, Road Assignment Model and Public Transport Assignment Model) which receive inputs from the National Demand Forecast Model (NDFM) and provide outputs for transport appraisal and secondary analysis. This process is shown in Figure 3-3 below.

Figure 3-3: Model Structure

3.3.2 Planning Data

The Planning Data referred to above is a national database of 99 demographic and spatial variables for each of the 18,488 CSAs in the state. The main categories of planning data are:

- References and spatial definitions;
- Origin-based person types; e.g. age bands, gender, principal economic status (PES), employment type, and various combinations of categories;
- Destination-based person types; e.g. employment type or education type; and
- Households.

3.3.3 National Demand and Forecasting Model (NDFM)

The **NDFM** is a separate modelling system that estimates the total quantity of travel demand generated by and attracted to every Census Small Area (CSA) daily. The level of demand from, and to, each zone (referred to as 'trip ends') is related to characteristics such as population, number of employees and land-use data as outlined in Section 2.

The NDFM comprises the set of models and tools that are used to derive national levels of trip making, for input to each of the regional models. The NDFM outputs the levels of trip making at the smallest available spatial aggregation (CSA).

The key components of the NDFM are as follows:

- The Planning Data Adjustment Tool (PDAT) controls the planning data inputs to the core NDFM system. It is used to amend planning data to represent the combination of general changes over time and the relevant land-use planning scenarios;
- The Car Ownership/Car Competition Model estimates the level of car ownership in a CSA, (subdividing the number of households in each CSA between 'No Car', 'Cars < Adults' and 'Cars >= Adults' households) i.e. the car competition bands;
- The Car Availability Model classifies the set of individual person trips as either 'Car Available' or 'Car-not-available' using calibrated relationships between the three car competition bands and the trip purpose;
- The National Trip-End Model (NTEM) converts the planning data into person trips, using calibrated trip rates; and
- The Regional Modelling System Integration Tool (RMSIT) estimates the level of trip-making by main mode (car, bus, rail and goods vehicles) between 38 of the main urban settlements in Ireland.

Figure 3-4 shows the system of NDFM models and the key regional model components that the NDFM interacts with.

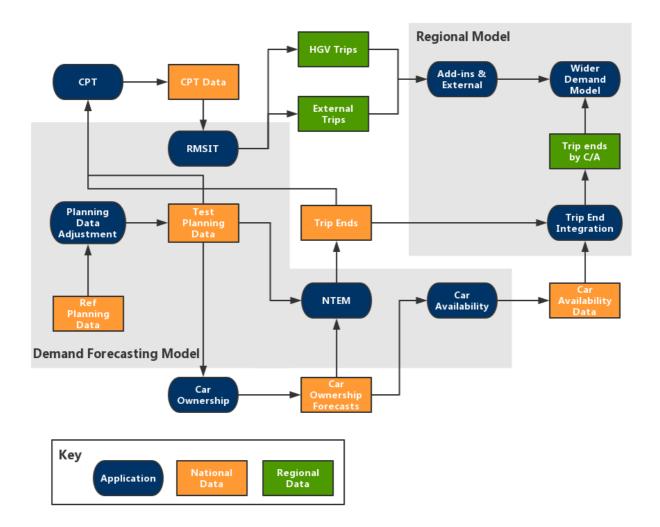


Figure 3-4: NDFM Structure

3.3.4 Demand Segments

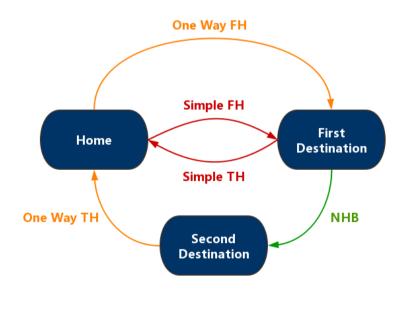
Groups of people with similar travel behaviours (for example, commuters who own a car) are represented by distinct demand segments in the regional modelling system. This allows those groups to be treated differently in the regional demand model according to their behaviour.

The NDFM demand segments were derived from the National Household Travel Survey (NHTS) data and *Place of Work, School or College - Census of Anonymised Records* (POWSCAR) data sets. They have been segmenting into 33 distinct classifications as noted below in Table 3-3.

Table 3-3: Demand Segments

No.	Purpose	Car Availability	Third Level of Segmentation
1	Commute	Available	Blue collar
2	Commute	Available	White collar
3	Commute	Not available	Blue collar
4	Commute	Not available	White collar
5	Education	Available	Primary
6	Education	Available	Secondary
7	Education	Available	Tertiary
8	Education	Not available	Primary
9	Education	Not available	Secondary
10	Education	Not available	Tertiary
11	Escort to education	Available	Primary
12	Escort to education	Available	Secondary
13	Escort to education	Available	Tertiary
14	Escort to education	Not available	Primary
15	Escort to education	Not available	Secondary
16	Escort to education	Not available	Tertiary
17	Other	Available	Employed
18	Other	Available	Non-working
19	Other	Not available	Employed
20	Other	Not available	Non-working
21	Shopping - food	Available	Employed
22	Shopping - food	Available	Non-working
23	Shopping - food	Not available	All
24	Visit friends / relatives	Available	Employed
25	Visit friends / relatives	Available	Non-working
26	Visit friends / relatives	Not available	All
27	Employers Business	All	All
28	All	Available	Retired
29	All	Not Available	Retired

No.	Purpose	Car Availability	Third Level of Segmentation
30	One-way business	Available	All
31	One-way business	Not available	All
32	One-way other	Available	All
33	One-way other	Not available	All


3.3.5 Tours

Tours are an important aspect of how Trip Ends are modelled. The main concept is that every person is expected to make a distinct series of trips beginning from their house and ultimately returning home (signalling the end of a tour). The five distinct trip types which may comprise a tour are shown graphically below in Figure 3-5 and include:

- Simple from Home;
- Simple to Home;
- One-way from Home;
- One-way to Home; and
- Non-Home-Based (NHB) trips.

All tours are defined relative to a home or a destination. This corresponds to the concept of productions and attractions where productions are associated with homes and attractions are associated with destinations. The terms productions and attractions are not used when discussing one-way or NHB trips. These are dependent on direction, are not defined to return to a home or a particular attraction, and therefore in these cases the labels origin and destination are used as referring to the start and finish location of such trips.

It is worth noting that trip chains (a tour comprising more than two trips) are modelled as multiple single trips. These consist of an outbound (one way From Home) and an inbound (one-way To Home) as well as any number of intermediate NHB trips. An example of this is shown in Figure 3-5.

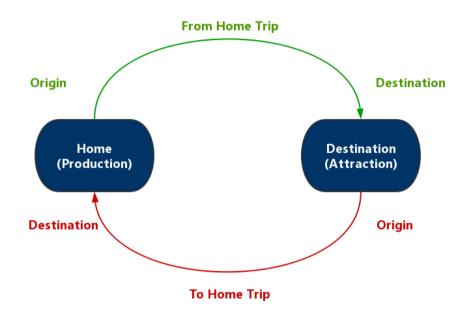
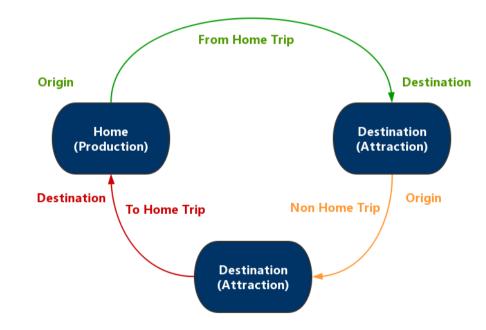



Figure 3-6 shows the most basic relation of origins and destinations with respect to directional trips, comparable to simple tours.

Figure 3-6 PA V OD for Simple Tours

Figure 3-7 (below)shows the same relationship for trip chains, where it is particularly noted that both ends of a non-home-based tour correspond to attractions.

Figure 3-7 PA V OD for Extended Tours

Tours are considered as movements within or from time period to time period as shown in the Tour Grid in Table 3-4. The tours under the diagonal for the IP1, IP2 and PM time periods (marked in green) are those which are not considered in any calculations while the off-peak tours (marked in red) are considered only in commute demand segments. Time period demand is derived either by summing the rows (From Home) or the columns (To Home).

TP Out\ TP In	AM	IP1	IP2	РМ	ОР
AM	1	2	3	4	5
IP1	6	7	8	9	10
IP2	11	12	13	14	15
PM	16	17	18	19	20
ОР	21	22	23	24	25

Table 3-4: Tour Grid

3.3.6 MWRM Demand Model

The **Demand Model** models travel behaviour and is implemented in Cube Voyager. The demand model processes all-day travel demand from the NDFM through a series of choice models to represent combined mode, time of day, destination and parking decision making. The outputs of the demand model are a set of trip matrices which are assigned to the Road and Public Transport models to determine the route-choice and generalised costs.

The demand model consists of several components that interact in a sequential manner between the trip end model and the assignment models. It includes the following distinct components:

- Macro Time of Day;
- Mode Choice;
- Destination Choice;
- Parking; and
- Tours and One-Way.

A simple representation of the model structure is shown in Figure 3-8.

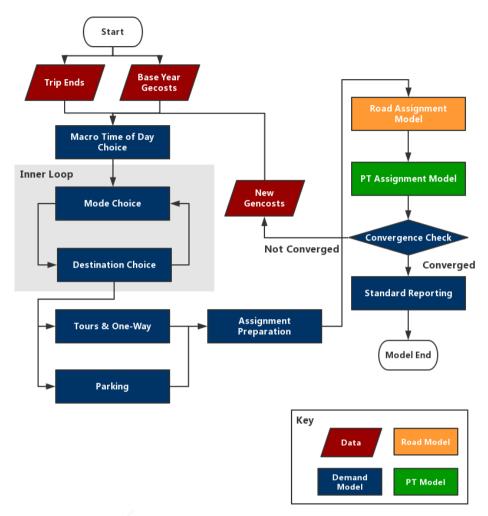


Figure 3-8: Demand Model Structure

3.3.7 MWRM Road Assignment Model

The **Road Assignment Model** (RDAM) is implemented in SATURN and includes capacity restraint whereby travel times are recalculated in response to changes in assigned flows. The main purpose of the RDAM is to assign road users to routes between their origin and destination zones. The cost of travel is then calculated by the RDAM for input to the demand model and economic appraisal.

It should be noted that SATURN is a macroscopic model and considers the aggregate behaviour of traffic flows. It does provide detail on junction delay and queueing along links it is a strategic model used to look at impacts across a wider area. Whilst suitable for the purposes of this strategic assessment it is not suitable for detailed junction modelling which consider the interaction of individual vehicles which should be undertaken using a microscopic model such as VISSIM or PARAMICs.

The inputs to the Road Assignment model from the demand model are the road assignment matrices from the assignment preparation stage. The outputs from the Road Assignment model for the demand model processes consist of generalised costs skims by time period and assigned road networks in CUBE Voyager format which are passed on to the PT model.

In addition to these requirements for demand model processes, there are a series of standard SATURN outputs that are produced for use in the specific interrogation of the road networks for scheme and/or scenario assessment.

3.3.8 MWRM Public Transport Assignment Model

To generate costs to update the choice model processes, a PT assignment must be undertaken to establish new generalised costs. The **Public Transport Assignment Model** (PTAM) is implemented in Voyager and is used to allocate PT users to services between their origin and destination zones. The model includes a representation of the public transport network and services for existing and planned modes within the modelled area. The model includes:

- Rail;
- DART;
- Luas;
- Metro.
- Urban Bus;
- Inter-Urban Bus; and
- Bus Rapid Transit (BRT).

The outputs of the PT assignment model fall into two categories, those required by the demand model, and those produced for reporting and analysis purposes.

The outputs from the Public Transport Assignment model for the demand model processes consist of the assigned networks which are passed on to active mode assignment as the starting point for their network build procedure, and generalised cost skim matrices by user class for each of the assigned time periods that feed back into the main Mode and Destination choice demand model loop. An overview of the PT model process is shown below in Figure 3-9.

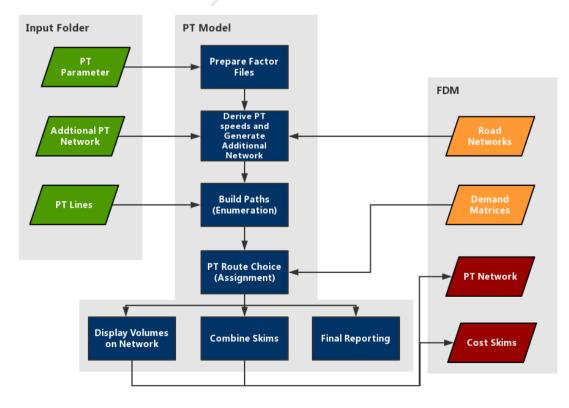


Figure 3-9: PT Model Process

3.3.9 MWRM Active Modes Model

The Regional Modelling System represents active modes (i.e. walking and cycling) within the demand model to improve the realism of travel choices. To generate costs to update the choice model processes, an **active modes assignment** must take place to establish new generalised costs. This active mode assignment assumes no crowding or delays.

The inputs for the active assignment model are the output CUBE format PT networks, the demand model produced assignment matrices and separate input pedestrian only links and cycle lanes. The outputs of this process include an assigned network with walk and cycle flows by user class, and a set of generalised cost skims. The active assignment is a CUBE-based lowest cost path assignment model with no junction modelling based purely on distance and a constant speed by mode.

Walk speeds are taken as 4.8 kph for all user classes while cycle speeds are set to 12 kph as default except in specified cases as indicated by the cycle data network input. Improvements to cycling mode provision are included through associating improvements to cycling Quality of Service to increases in service user speeds.

3.4 Suitability of Mid-West Regional Model in Developing the Strategy

3.4.1 Model Calibration and Validation

Modal share

Journey time distribution

It is important that a strategic transport model is appropriately calibrated and validated in line with best practice guidelines. The MWRM has been subject to a comprehensive calibration and validation process whereby a substantial amount of observed data has been incorporated into both the demand model and the assignment models as presented in Table 3-5.

Public transport in-vehicle time factors

Public transport fares and ticket types

Public transport boardings and alightings

Public transport interchange/transfers

Public transport passenger flows

Public transport journey times

Demand Model	Assignment Models
Tour proportions	Road traffic volumes
Generalised cost distributions	Road journey times
Travel distance distributions	Road trip length distribution

Table 3-5: Observed data used for model calibration and validation

The calibration and validation process ensure that the MWRM accurately reflects existing conditions and 'costs' associated with travel. This allows changes in the forecasting of transport demand and strategic transport infrastructure schemes and appropriate transport policies to be modelled and tested using the MWRM. Further details on the model calibration can be found in the MWRM Demand, Road, PT and Active Mode development reports, available on the NTA's website²

² https://www.nationaltransport.ie/regional-transport-model/regional-model-overview/regional-model-structure/mwr/

3.4.2 Use of MWRM for Strategic Transport Planning

The model has many strengths and features that make it the ideal tool to aid the strategic planning process. The MWRM has been developed from first principles making best use of the most recently available data (POWSCAR and NHTS) to replicate travel choices and transport network conditions as accurately as possible.

Several distinct journey purposes and characteristics including car availability, employment status, and education level are considered within the model to evaluate travel choices more accurately. This carries through to forecasting whereby specific person type demand can be forecast to derive appropriate trip distributions and future year travel conditions.

The model utilises a tour-based approach which allows for more accurate mode choice modelling and consideration of travel costs, particularly with respect to the inclusion of parking charges.

Four main modes of travel: private car, public transport, walking, and cycling are included in the model. Each mode has been calibrated individually, for each journey purpose, to replicate observed trip cost distributions.

The use of SATURN software in the road model allows for junction modelling to be included in the model which improves typical network representation in congested areas over an entirely linkbased approach. Link speeds and delays are transferred to the public transport model which allows journey times of on-street modes (Bus, BRT) to reflect perceived traffic conditions rather than a strict timetable.

The model covers the L-SMA region plus surrounding counties, and takes full account of travel within, into and out of the L-SMA area. As the model is also used as the basis for scheme evaluation, the transport networks represented contain a level of detail beyond that which would be normally required for its use as a strategic transport planning tool.

To account for the availability of parking facilities in Limerick and Shannon City Centre, both a free workplace parking model and a parking constraint model have been implemented to re-evaluate mode choice based on whether parking was available at the travellers' ultimate destination.

There are however, as with all transport models, limitations to what the model can be used to assess. There are a number of potential measures which cannot be assessed using the MWRM. These include, amongst others;

- Intelligent Transport measures which improve wayfinding, management of parking and route choices;
- Behavioural Change Initiatives which influence choice of mode and time of travel;
- Public Transport measures such as Real Time Information and integrated ticketing;
- Public Ream enhancements which improve the quality of the environment and likelihood for walking/cycling trips.

With respect to the performance of individual junctions SATURN does provide information on the performance of individual junction but operational assessments of junctions should be undertaken at a more localised level using microscopic modelling. However, for the purposes of this strategy this level of detail is not required. Any measures identified in the strategy will need to undergo further assessment as part of their future appraisal which may include further modelling.

3.4.3 Summary

The Mid-West Regional Model (MWRM) provides a comprehensive representation of travel patterns across the Limerick and Shannon Metropolitan Area and is a suitable tool for the testing and appraisal of the Strategy. The limitations of strategic transport models are recognised and fully

understood. The MWRM is considered the appropriate tool for fulfilling the NTA's requirements in terms of its planning and appraisal needs.

4 Modelled Scenario Comparison

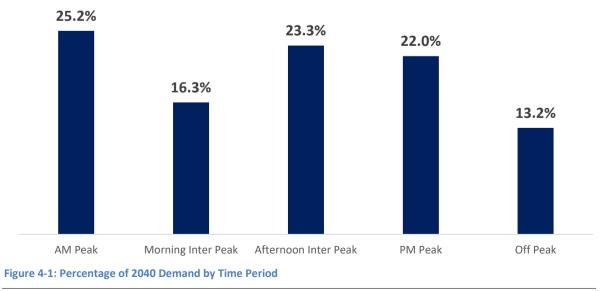
4.1 Introduction

This section of the report outlines a comparison of the characteristics of the demand between the two 2040 modelled scenarios, the Do-Minimum Scenario and the Idealised Network Scenario. An overview of each scenario is provided below.

4.1.1 Do-Minimum Scenario

This scenario represented the committed future transport network, i.e. the base transport network with committed road improvements in place. This included Phase 1 of the Northern Distributor Road.

4.1.2 Idealised Network Scenario


The Idealised Network scenario facilitates an unconstrained analysis of potential public transport demand on key corridors in the L-SMA. In modelling the idealised network, it has been assumed that each corridor on the network will operate with optimal characteristics in terms of frequency, capacity, coverage, interchange opportunity, directness & speed. This will ensure that public transport represents a highly attractive mode for those travelling along the corridor.

In adopting this approach, it ensures that the maximum potential for public transport use on each corridor can be ascertained, although in reality; this may never be achieved. In addition, the full northern distributor road was modelled with PT priority to allow orbital bus movements. The Foynes to Limerick Road Scheme incorporating Adare Bypass was also included for this assessment though it is recognised that this scheme is not yet committed.

4.2 2040 Transport Demand Characteristics

4.2.1 Profile of Demand throughout the Day

In total, there are approximately 600,000 trips originating within the L-SMA over the 24-hour period in both the 2040 Do Min and Idealised Scenarios which represents a 21% increase compared to the 2012 base year model. The percentage breakdown of demand between the five modelled periods is approximately equal in both scenarios and is presented below in Figure 4-1. The busiest periods in terms of total demand are the AM morning peak and the Afternoon Inter peak.

4.2.2 Breakdown of Trip Purposes

The breakdown of 2040 demand between trip purposes is shown in Figure 4-2 by time period and in Figure 4-3 for the 24-hour period. As expected, there is a higher level of commute in the morning and evening peak and more education trips in the morning and afternoon peaks. The 'Other' trip purpose is the largest trips purpose in each time period. This includes trips made by those in retirement, visiting friends and relatives, food shopping, leisure trips and non-food related shopping trips.

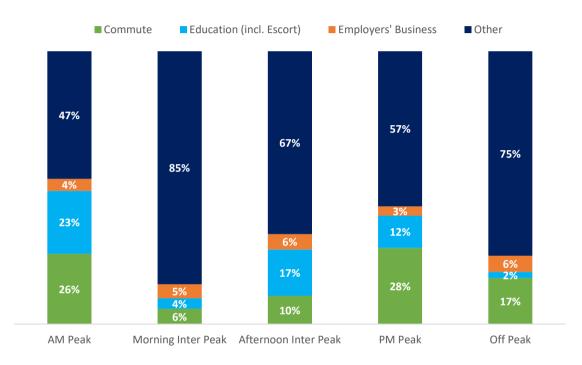
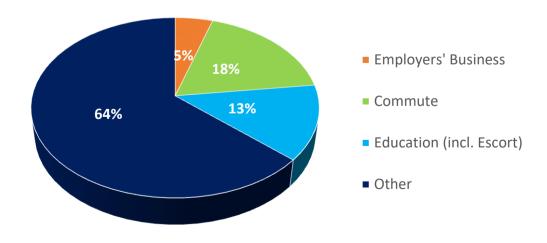



Figure 4-2: Percentage of 2040 Demand by Trip Purpose per Time Period

Figure 4-3: Percentage of 2040 24-Hour Demand by Trip Purpose

4.2.3 Overall Mode Share Comparison

The mode shares for the 24-hour period for the scenarios are shown below in Figure 4-4. The graph shows a reduced car mode share in the 2040 Idealised Network scenario, reducing from 67% to 61% respectively, with uplifts in the public transport mode shares. The chart below also shows a drop in the walking and cycling mode share in the Idealised scenario due to the high frequency and coverage of the unconstrained public transport network attraction.

Figure 4-4: Limerick and Shannon Metropolitan 2040 24-Hour Mode Share Split Comparison

It should be noted that whilst the Idealised Scenario does include significant public transport provision it does not contain any significant demand management measures and thus the shift from private car to public transport is limited.

4.2.4 Mode Share by Trip Purpose Comparison

The mode share by trip purpose is outlined in Table 4.1 and Table 4.2 for the 2040 Do Minimum & Idealised Network Scenario. The results show that commuting and education car mode share are only slightly reduced in the idealised scenario with a more significant reduction in other road trips.

Purpose	Road	РТ	Walk	Cycle
Commute	71.3%	1.7%	24.7%	2.2%
Education	51.4%	8.3%	39.1%	1.3%
All Other Purposes	71.6%	7.8%	19.2%	1.4%

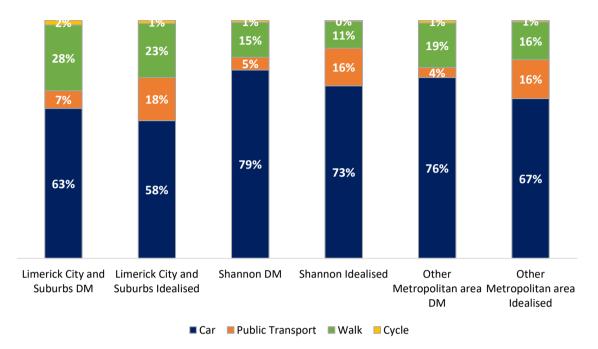

Table 4.1: Limerick and Shannon Metropolitan Area 2040 Do Min Mode Share by Trip Purpose

Table 4.2: Limerick and Shannon Metropolitan Area 2040 Idealised Mode Share by Trip Purpose

Purpose	Road	РТ	Walk	Cycle
Commute	70.9%	4.3%	23.2%	1.6%
Education	50.1%	15.9%	33.3%	0.7%
All Other Purposes	60.9%	23.8%	14.4%	0.9%

4.2.5 Mode Share by Area

The 24-hour mode share comparison for the Limerick City and Suburbs, Shannon, Other Metropolitan Areas and are presented in Figure 4-2 for both scenarios. As shown there is a significant uplift in the level of public transport across all areas in the 2040 Idealised scenario, with reduction in car mode share as well as walking and cycling due to the enhanced PT offering.

Figure 4-5: Limerick and Shannon Metropolitan 2040 24-Hour Mode Share Split by Area

A more detailed breakdown of the car mode share by MWRM zone is shown in Figure 4-6 & Figure 4-7 which illustrate the car more share in the 2040 Do-Minimum and Idealised Network Scenarios respectively. As shown there, notable decreases in car mode share throughout the metropolitan area particularly in the wider suburbs, university and proposed SDZ lands.

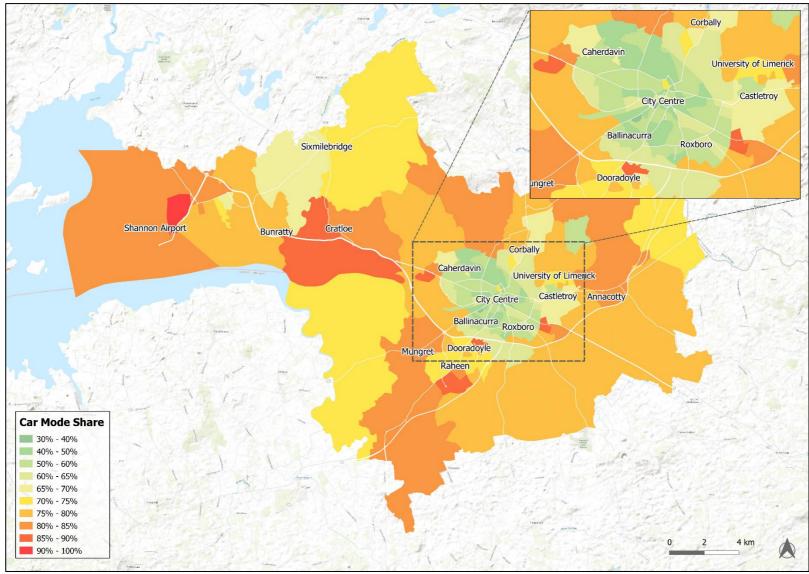


Figure 4-6: Limerick and Shannon Metropolitan 24-Hour 2040 DM Car Mode Share by MWRM Zone

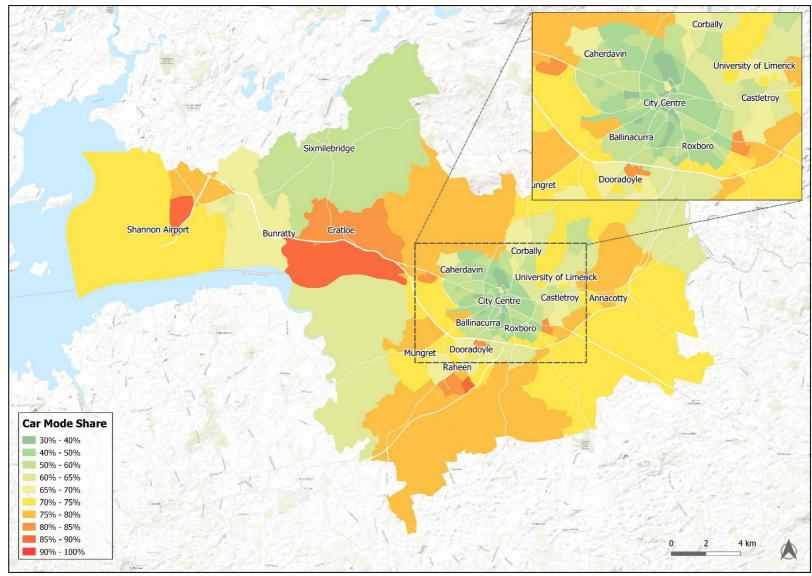


Figure 4-7: Limerick and Shannon Metropolitan 24-Hour 2040 Idealised Car Mode Share by MWRM Zone

4.2.6 Mode Share by Time Period

Figure 4-8 and Figure 4-9 show the mode shares for the Limerick and Shannon Metropolitan Area by time period for the 2040 Do-Minimum and Idealised Network Scenario. The figures show the most significant increases in public transport mode share with increments of approximately 10% in most of the peak time periods. This is due to both reductions in the car mode share and walk trips replaced by public transport.

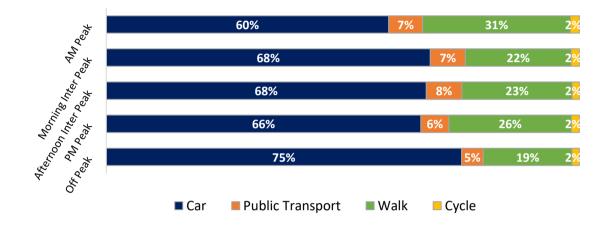


Figure 4-8: 2040 Do-Minimum Scenario Mode Shares by Time Period

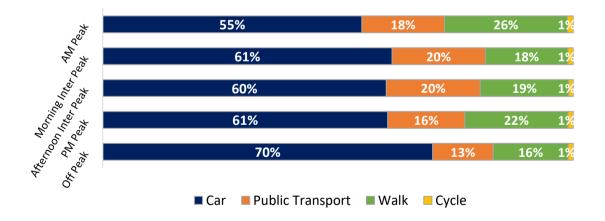


Figure 4-9: 2040 Idealised Network Scenario Mode Shares by Time Period

4.3 Transport Demand Movement Patterns

4.3.1 Sector to Sector Comparison Analysis

The movements between defined sectors were also extracted from the MWRM for the 24-Hour Period. Table 4.3 and Table 4.4 summarise this information at a high level between wider aggregated areas if the metropolitan area and outside the study area by proportion and absolute trip numbers.

Origin/ Destination	Wider City	Metro Towns	Metro Rural	Outside Metro
Wider City	79.3%	3.1%	5.9%	11.7%
Metro Towns	20.1%	52.7%	5.0%	22.2%
Metro Rural	53.6%	8.4%	20.6%	17.4%
Outside Metro	7.0%	2.0%	1.1%	89.8%

Table 4.3: Limerick and Shannon Metropolitan 24-hour 2040 Idealised Destination Demand by Sector

Table 4.4: County Level Total 24 Hour 2040 Idealised Demand

24-hour Demand	Wider City	Metro Towns	Metro Rural	Outside Metro	Total Origin Demand
Wider City	372,115	14,586	27,914	54,713	469,328
Metro Towns	13,728	36,096	3,418	15,216	68,458
Metro Rural	28,942	4,548	11,129	9,426	54,045
Outside Metro	51,033	14,557	8,283	652,744	726,618
Total Destination Demand	465,818	69,788	50,744	732,099	1,318,450

The origin destination patterns were also analysed between the settlements presented in Section 2 and shown in Figure 2-2 and again in Figure 4-10 for clarity. The settlement to settlement movements are presented in Table 4.5 & Table 4.6 for the 2040 24 hour and AM time period respectively. As shown, there is strong demand between the city centre and surrounding settlement areas. There is also strong demand between the university and proposed SDZ, and between settlement south of the M20.

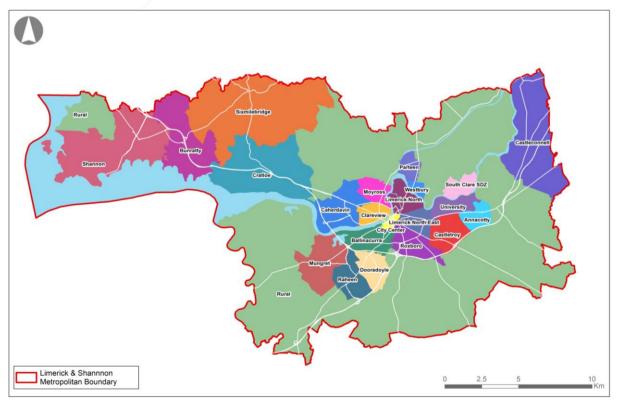


Figure 4-10: Sector System used for Origin-Destination Analysis

4 | Modelled Scenario Comparison

Table 4.5 Settlement to Settlement Idealised 24 Hour 2040 Demand

Settlement	City Center	Annacotty	Ballinacurra	Caherdavin	Castletroy	Clareview	Dooradoyle	Limerick North	Limerick NE	Moyross	Mungret	Parteen	Raheen	Roxboro	SDZ	University	Westbury	Bunratty	Castleconnell	Cratloe	Shannon	Sixmilebridge	Rural
City Center	10840	865	5447	3164	1321	3580	2813	3225	4978	2683	586	190	1326	3969	742	952	732	58	416	187	729	426	2846
Annacotty	917	3778	615	272	1444	213	557	402	1429	243	231	70	330	820	617	1866	120	10	521	28	151	70	1856
Ballinacurra	5640	581	10496	1679	946	1669	4720	1294	2442	1223	1287	89	2902	2642	459	643	290	40	336	124	424	237	2545
Caherdavin	3321	284	1821	5743	296	2454	805	802	1100	2305	279	166	384	800	442	464	199	89	135	347	1225	420	1424
Castletroy	1384	1502	991	291	3187	334	845	580	2420	324	309	51	487	1659	613	1911	102	10	309	25	136	55	1582
Clareview	3590	207	1681	2333	327	3606	774	1046	1401	1843	182	91	311	1051	243	309	172	37	97	122	475	205	850
Dooradoyle	2868	518	4754	756	816	773	9792	650	1485	571	1710	45	4629	1729	307	486	134	24	299	71	305	122	3231
Limerick North	3333	417	1320	792	577	1087	674	3752	2533	1064	146	144	278	1224	555	707	587	18	159	56	242	137	1059
Limerick NE	5098	1429	2460	1071	2393	1417	1541	2509	8589	1186	362	125	708	3852	1249	1849	435	24	452	64	316	170	2371
Moyross	2738	247	1257	2339	321	1918	580	1066	1188	3826	126	135	235	822	699	505	170	49	110	131	448	228	935
Mungret	720	232	1574	285	319	208	2035	157	386	140	2531	15	2001	424	74	145	37	12	141	39	164	55	1503
Parteen	197	73	94	167	50	100	47	140	124	140	15	147	21	64	139	105	87	3	35	12	50	30	242
Raheen	1719	346	3589	414	526	382	5669	328	799	278	2081	24	6485	891	156	304	67	20	189	54	283	84	2096
Roxboro	4089	795	2686	778	1597	1062	1806	1193	3731	816	390	63	780	4918	541	846	222	20	261	52	265	130	2086
SDZ	911	631	537	477	616	290	325	534	1318	704	69	146	140	602	4977	5855	217	11	309	36	152	107	1117
University	1153	2042	715	489	1938	350	537	724	1981	532	142	112	278	949	5962	4362	263	23	629	46	179	135	1881
Westbury	741	116	290	186	96	174	135	568	424	161	35	84	60	221	207	237	321	6	44	18	88	37	288
Bunratty	62	10	44	89	10	40	25	18	26	49	11	3	17	21	11	23	6	345	10	42	877	192	96
Castleconnell	403	502	341	129	296	97	305	149	439	106	138	33	176	257	280	569	45	10	2178	15	114	69	743
Cratloe	174	27	125	333	24	119	72	52	58	119	35	11	45	47	37	42	18	43	15	539	578	200	191
Shannon	716	143	436	1122	136	467	292	225	319	399	138	47	230	261	141	157	85	795	114	506	23239	1494	2009
Sixmilebridge	377	63	225	376	48	189	108	121	149	195	46	27	63	113	95	114	35	179	62	178	1454	2848	379
Rural	3082	1910	2798	1435	1633	912	3543	1057	2433	941	1459	236	1998	2259	1129	1817	300	117	758	207	3005	461	11129

Table 4.6 Settlement to Settlement Idealised 2040 AM Demand

Settlement	City Center	Annacotty	Ballinacurra	Caherdavin	Castletroy	Clareview	Dooradoyle	Limerick North	Limerick NE	Moyross	Mungret	Parteen	Raheen	Roxboro	SDZ	University	Westbury	Bunratty	Castleconnell	Cratloe	Shannon	Sixmilebridge	Rural
City Center	2237	101	1183	295	156	473	396	435	761	406	76	21	151	696	89	233	54	8	40	22	113	46	305
Annacotty	269	1307	234	64	375	53	150	117	384	72	95	21	121	259	186	844	16	4	74	7	62	10	470
Ballinacurra	1467	71	3548	181	133	301	910	243	540	277	186	12	381	652	65	207	27	6	26	15	84	26	300
Caherdavin	1086	83	781	1793	87	900	227	271	343	857	91	55	118	275	130	194	33	33	19	107	447	73	376
Castletroy	422	505	367	60	980	85	217	176	743	111	115	15	166	552	190	961	14	3	39	6	51	8	356
Clareview	1177	46	622	395	75	1153	186	270	387	498	44	21	67	321	51	110	24	10	14	27	130	36	162
Dooradoyle	776	93	1584	101	143	147	2508	132	323	114	422	8	1264	401	62	177	13	6	27	11	90	15	587
Limerick North	1042	106	500	155	138	326	166	1347	741	284	42	41	70	401	121	269	92	5	24	13	72	23	211
Limerick NE	1442	270	751	154	428	336	312	624	2330	258	80	24	144	1106	211	621	48	5	53	11	72	24	381
Moyross	747	60	413	598	63	620	132	335	313	1281	25	43	51	255	119	162	26	9	17	34	115	39	192
Mungret	191	31	558	47	44	40	520	31	75	36	730	2	553	85	17	53	3	4	8	6	54	6	262
Parteen	57	22	39	42	13	27	13	46	33	37	6	55	7	20	41	43	14	1	6	3	20	5	53
Raheen	492	65	1448	83	98	92	1479	88	192	80	670	5	2277	234	40	120	9	6	18	10	97	12	396
Roxboro	1105	146	872	113	281	245	409	260	858	164	87	12	174	1435	94	273	24	4	31	9	62	20	356
SDZ	207	126	206	93	98	62	57	160	304	299	12	42	33	150	1604	3466	25	2	33	6	31	10	204
University	242	298	162	59	223	55	75	118	361	125	19	15	35	176	521	1383	24	2	60	4	25	12	219
Westbury	261	46	142	58	32	64	43	299	146	55	14	40	24	91	79	112	86	3	9	6	37	7	88
Bunratty	19	2	18	17	2	10	6	5	8	20	3	1	4	6	3	13	1	92	1	9	263	32	32
Castleconnell	137	213	157	49	105	34	114	64	129	39	73	15	89	92	123	265	10	5	671	6	56	16	298
Cratloe	43	9	54	97	8	32	21	17	15	37	12	3	15	14	14	22	3	16	2	196	227	41	59
Shannon	193	19	144	140	22	93	56	45	76	89	26	6	37	68	31	68	6	197	9	76	6386	189	619
Sixmilebridge	113	25	109	122	16	58	36	49	47	65	20	11	25	42	42	62	6	66	12	69	580	748	144
Rural	973	622	1155	427	507	277	1127	403	715	307	573	99	768	780	388	811	51	33	134	65	793	77	3592

39

5 Corridor Analysis

5.1 Overview

To facilitate analysis of 2040 travel demand within the L-SMA, the area was divided into several corridors based on the national and regional transport networks around a central city centre core. This section of the report provides a comparison of overall demand from each corridor and an analysis of the demand characteristics and distribution for each corridor using outputs from the MWRM 2040 idealised network model run.

These corridors are primarily used to describe radially-based trips, which represents the most dominant trip pattern within the L-SMA.

The corridors and the settlements within each corridor are as follows:

- Corridor A: King's Island, Westbury and Parteen;
- Corridor B: The University, South Clare SDZ, Annacotty, Castletroy, Garryowen and Castleconnell;
- Corridor C: Roxboro;
- Corridor D: Dooradoyle, Raheen and Ballinacurra;
- Corridor E: Mungret, and Ballinacurra;
- Corridor F: Moyross, Clareview, Caherdavin, Shannon, Bunratty, Sixmilebridge and Cratloe.

The corridors have been subdivided into smaller segments based on inner and outer sectors which allow for the greater understanding of movements along the corridor and orbital trips between corridors. The city core, sectors, corridors and segments are shown in Figure 5-1. The segments are named based on their corridor letter and sector number (i.e. Segment B1 lies with corridor B and sector 1).

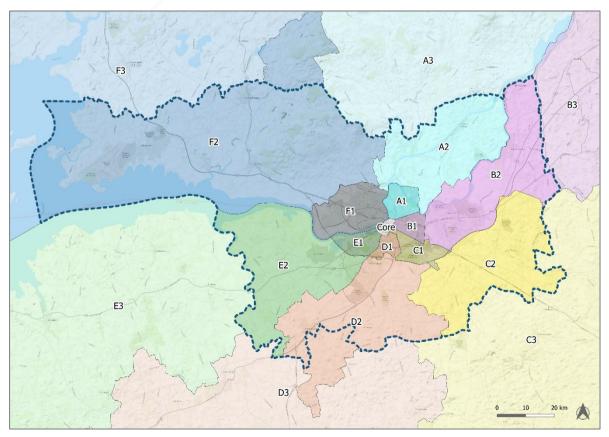


Figure 5-1 L-SMA Corridor & Segments

5.2 Corridor Comparison

5.2.1 Population & Employment

The total 2040 population, employment and education figures by corridor is shown in Figure 5-2 as modelled in the 2040 planning sheet. The Figure shows Corridor B has the highest population followed by Corridor F. Corridor D & E also have a significant residential population. Employment is highest within the Corridor B followed by Corridor F, E & City Core.

Figure 5-2 2040 Employment & Population by Corridor (2040 Planning Sheet)

5.2.2 Total Demand

The total all day 2040 demand originating within each corridor has been extracted from the idealised MWRM model run and is shown in the graph in Figure 5-3, which also provides a breakdown of corridor demand by segment. The all-day demand by segment is also illustrated in Figure 5-4.

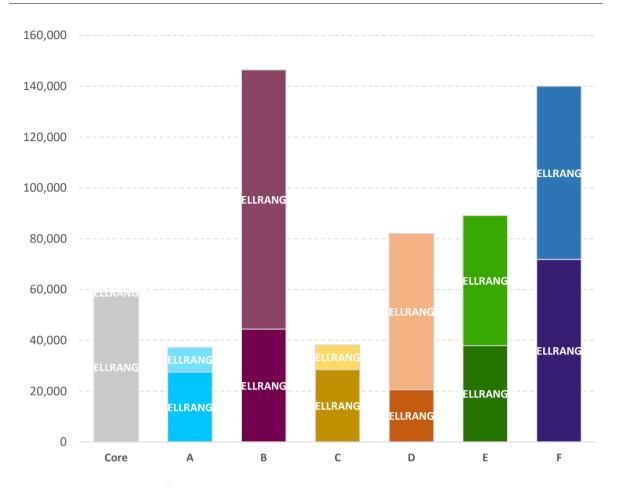


Figure 5-3 2040 All Day Demand Originating within each Corridor

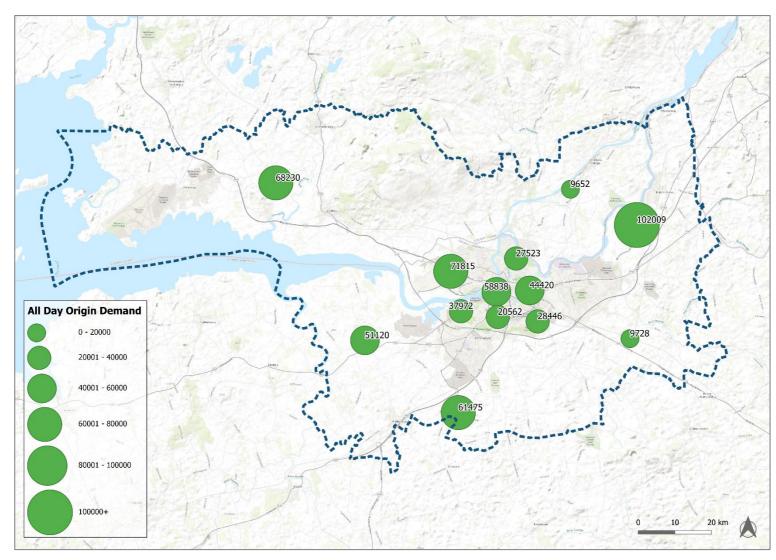
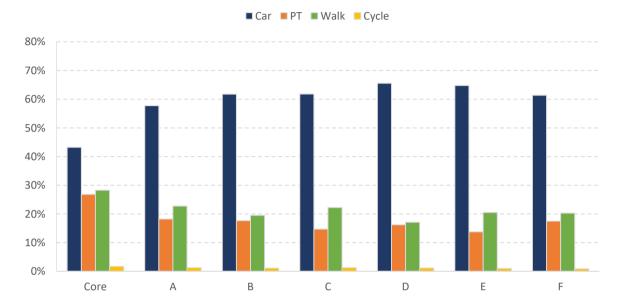
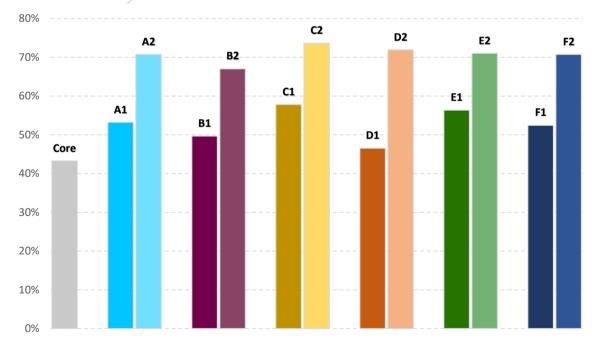



Figure 5-4 2040 All Day Demand Originating within each Segment


5.2.3 Mode Share

The mode share for each corridor and the core centre segment have been extracted from the 2040 idealised scenario and are presented in Figure 5-5. The figure shows a lower car mode share within the core city centre segment followed by Corridors A, F, B & C. The highest walking mode shares are also observed in the core city centre, segments A and C. The car mode share within the other corridors are comparable ranging between 61.8%-65.6%.

The mode share for each corridor has also been disaggregated to each segment as shown below in Figure 5-6.

5.2.4 Limerick and Shannon Metropolitan Origin & Destination Patterns

2040 Origin-Destination (OD) matrices were developed for all trips between each segment for all time periods, modes and trip purposes for the idealised scenario. The matrices for the 24 hour and AM peak for both the total demand, PT demand and Road demand are presented in Table 5.1 to Table 5.6.

The 24-hour total demand OD matrices show strong demand from most areas to the city core particularly from corridors B & F by public transport. In terms of orbital movements, there is significant demand between E2 & D2 by road. In terms of cross city demand, there is strong demand between Corridors B & F mainly F1.

Table 5.1 Segme	ent to segment	24-110UI 10La	ii 2040 Deilla	nu									
Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	10840	3958	724	4978	4173	2743	346	3201	3818	3754	2377	9428	1736
A1	4074	5227	723	2957	3014	1362	180	716	1077	1240	562	3464	800
A2	717	705	1508	483	1756	295	89	111	265	297	156	1249	576
B1	5098	2943	495	8589	6998	3464	511	1797	2492	1678	1218	3674	716
B2	4785	3077	1799	7376	46774	5275	2054	1396	3917	2533	2145	4771	1822
C1	2580	1265	278	3129	4454	3078	562	1565	2292	1084	1129	2193	468
C2	397	193	95	546	2179	689	2059	145	675	303	337	295	126
D1	3429	735	117	1840	1365	1693	134	2278	2199	1978	972	1687	361
D2	4018	1068	269	2472	3740	2489	603	2112	17141	4600	9131	2723	879
E1	3850	1210	292	1642	2255	1122	254	1890	4377	7394	4509	3647	826
E2	2900	629	174	1337	2203	1350	320	1049	10575	5439	15401	1859	881
F1	9649	3456	1251	3689	4547	2330	277	1629	2738	3852	1668	26366	4874
F2	1735	770	556	715	1720	504	115	333	857	886	751	4649	39903

Table 5.1 Segment to Segment 24-hour Total 2040 Demand

Table 5.2 Segment to Segment 24-hour 2040 Public Transport Demand

Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	1643	804	254	1168	1353	688	63	744	883	589	685	1922	766
A1	858	407	88	425	436	238	20	195	285	207	196	536	199
A2	243	75	94	109	210	70	6	47	60	66	38	197	74
B1	1202	406	112	932	1156	481	44	345	465	345	281	805	327
B2	1818	515	272	1466	4015	808	122	356	526	560	293	1315	535
C1	626	210	65	431	566	267	26	239	274	164	174	518	213
C2	75	21	7	50	102	34	20	15	21	26	13	50	24
D1	803	197	49	367	318	268	14	223	332	202	197	484	184
D2	1072	302	69	547	479	345	20	346	1006	529	709	610	251
E1	629	200	66	368	420	189	22	189	451	252	393	508	203
E2	941	233	53	364	314	244	17	226	811	530	683	466	200
F1	1914	520	190	824	1043	559	46	464	538	557	367	2479	944
F2	811	197	76	355	467	249	22	175	234	254	149	986	4062

Table 5.3 Segme	ent to segment	. 24-110ui 204	U KUAU Dellia	nu				-				-	
Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	4225	1580	378	1858	2172	1132	229	1181	2065	1791	1208	4201	907
A1	1627	2587	562	1353	2292	674	142	264	645	640	304	1842	581
A2	382	558	841	317	1440	201	80	52	195	206	114	952	490
B1	1947	1370	327	3310	4468	1678	384	752	1584	813	780	1604	361
B2	2238	2249	1411	4436	30752	3615	1710	858	3269	1782	1816	3113	1276
C1	1060	616	190	1426	3113	1465	455	710	1615	597	823	1013	242
C2	263	154	85	410	1865	568	652	113	639	260	319	219	102
D1	1309	276	55	760	879	789	105	779	1440	865	627	691	169
D2	2027	613	190	1463	3147	1714	568	1329	12467	3061	7484	1768	620
E1	1838	622	200	754	1664	603	215	800	2968	2982	2853	2090	603
E2	1425	327	116	800	1854	959	298	662	8770	3547	10476	1215	677
F1	4431	1861	962	1600	3199	1097	207	667	1875	2238	1143	11585	3760
F2	861	553	468	333	1243	241	92	150	615	613	599	3496	27942

Table 5.3 Segment to Segment 24-hour 2040 Road Demand

Table 5.4 Segment to Segment 2040 AM Peak Total Demand

Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	2237	489	76	761	578	592	41	440	518	916	250	1174	225
A1	1303	1825	185	887	888	511	39	194	278	526	140	942	211
A2	216	248	530	133	659	112	25	32	94	145	60	393	209
B1	1442	672	77	2330	1438	1125	82	373	480	564	217	748	136
B2	1298	736	364	1919	14767	1755	405	304	1057	991	620	1280	430
C1	595	191	31	587	590	856	67	278	376	281	165	327	71
C2	124	58	23	160	761	265	576	38	238	117	118	86	44
D1	1070	208	26	543	377	622	28	751	582	883	231	454	89
D2	1151	228	39	623	859	808	97	484	4822	1621	1996	538	216
E1	924	170	28	313	294	296	22	334	763	2525	491	521	111
E2	856	158	29	333	516	416	54	257	3269	2307	4904	468	274
F1	3010	960	291	1043	1158	837	58	421	698	1554	370	8093	1362
F2	472	201	111	188	524	173	21	78	218	368	145	1111	11062

Table 5.5 Segme	ent to Segment	2040 AIVI Pe	ak Public Irai	isport Demai	lu								
Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	338	115	31	199	194	142	8	102	142	143	87	292	112
A1	284	134	22	137	116	87	3	54	79	87	50	157	49
A2	88	28	34	41	67	31	1	16	20	34	12	70	21
B1	334	93	19	238	233	141	6	70	101	116	52	176	63
B2	537	159	72	444	1180	272	23	99	139	239	74	414	128
C1	165	43	11	97	92	76	3	46	52	49	28	102	38
C2	33	11	3	24	47	18	8	7	10	16	6	25	10
D1	267	62	12	122	91	95	3	66	91	82	49	148	47
D2	339	89	16	165	129	128	4	94	288	211	154	186	64
E1	170	43	10	92	77	55	3	40	99	84	74	116	35
E2	326	86	15	129	103	100	4	79	263	255	218	169	57
F1	631	157	50	268	257	204	8	127	142	225	88	718	229
F2	259	61	19	112	124	93	4	50	66	109	37	284	1028

Table 5.5 Segment to Segment 2040 AM Peak Public Transport Demand

Table 5.6 Segment to Segment 2040 AM Peak Road Demand

Segment	Core	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2
Core	791	198	39	273	337	205	29	165	307	341	135	516	110
A1	330	819	140	292	717	192	33	54	172	227	80	413	159
A2	89	199	297	72	564	70	23	12	72	97	47	288	186
B1	396	277	51	735	1071	421	68	134	331	224	152	280	70
B2	475	470	258	866	9555	1074	331	147	895	659	540	756	301
C1	192	84	18	232	448	356	57	109	285	126	127	128	32
C2	65	41	19	98	656	204	179	26	225	92	111	54	35
D1	284	62	11	168	254	215	23	213	406	270	160	144	41
D2	378	87	20	259	703	450	90	208	3318	839	1632	243	151
E1	338	73	16	113	202	127	18	127	548	823	327	255	74
E2	259	46	13	131	405	238	49	107	2636	1165	3248	234	216
F1	927	433	223	332	851	305	46	132	494	759	258	2762	1094
F2	189	133	88	67	399	74	16	25	151	250	107	770	7815

5.3 Activity Density

5.3.1 Overview

The gross Activity Density (combined population, education and employment density) has significant implications for the economic viability of transport infrastructure, service provision and potential for sustainable mode share. To assess the viability of serving demand along each corridor by public transport, the Activity Density has been mapped for the 2040 land-use scenario.

The approximate 2040 Activity Density within the Core Segment is presented in Figure 5-7 and highlights significant density within the city core as would be expected.

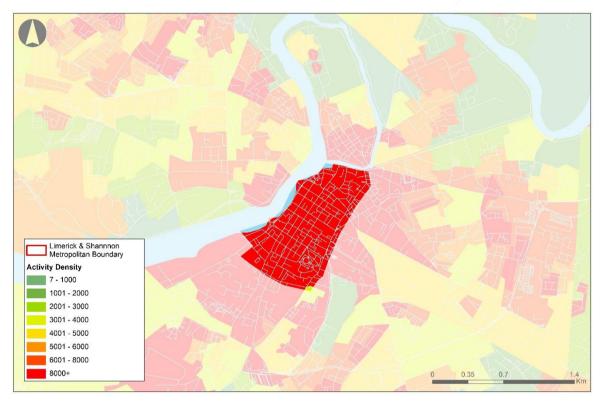


Figure 5-7 City Core 2040 Activity Density

Within Corridor A (below), there are relatively low Activity Density with some higher density areas on King's Island and the residential areas off Corbally Road, as shown in Figure 5-8. There are also some further areas of Activity Density at Corbally Road to the north of the Shannon in Westbury.

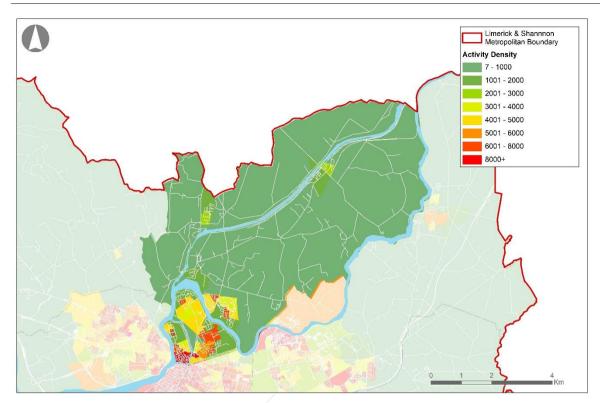
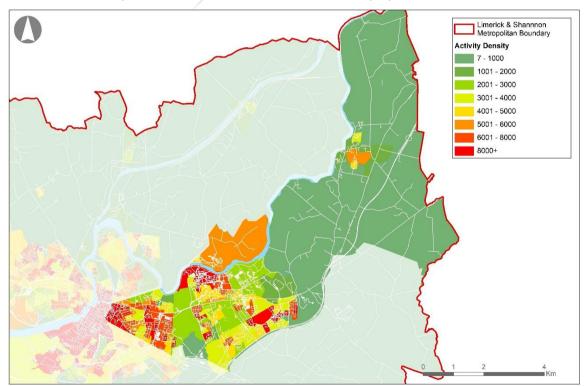
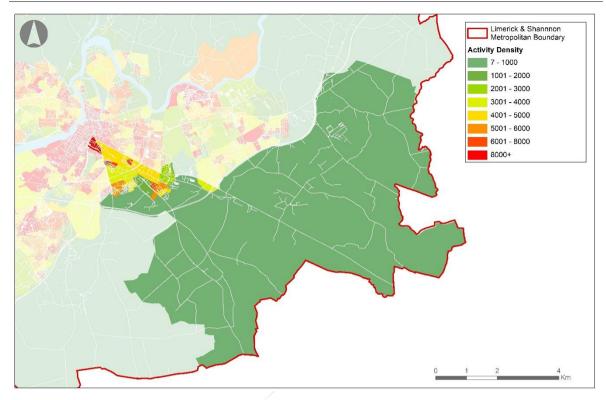
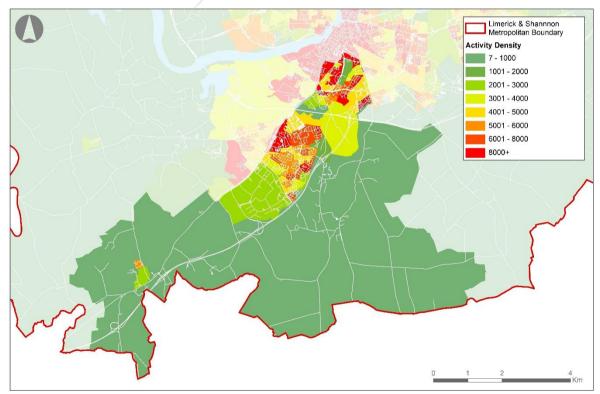



Figure 5-8 Corridor A 2040 Activity Density


As shown in Figure 5-9, Corridor B indicates areas of higher Activity Density on the approach to the City Centre, the University, and to the north of the Shannon within the proposed South Clare Economic SDZ.


Within Corridor C (below) there is lower levels of Activity Density along much of the corridor with some increases evident on the approach to the city.

5 Corridor Analysis

Figure 5-10 Corridor C 2040 Activity Density

Within Corridor D (below) there is higher level of Activity Density within the Dooradoyle area including the Hospital, the Crescent Shopping Centre and the approach to the city via O'Connell Avenue.

Figure 5-11 Corridor D 2040 Activity Density

Within Corridor E, there are higher levels of Activity Density adjacent to Corridor D along the R526, St.Nessan's Road and into the city via the Docklands area.

Figure 5-12 Corridor E 2040 Activity Density

Within Corridor F, there are higher levels of Activity Density in Moyross, Thomondgate and along the Ennis Road close to the City. There are also levels of higher Activity Density in the vicinity of Shannon town centre and Airport.

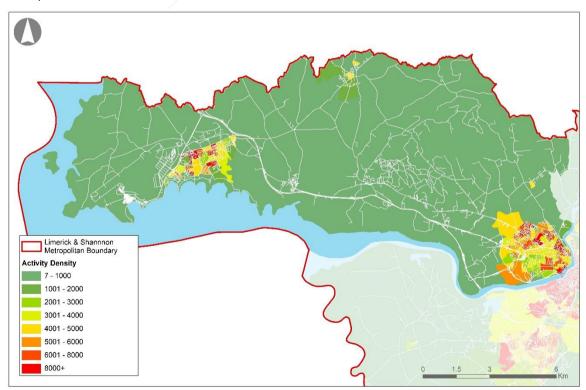
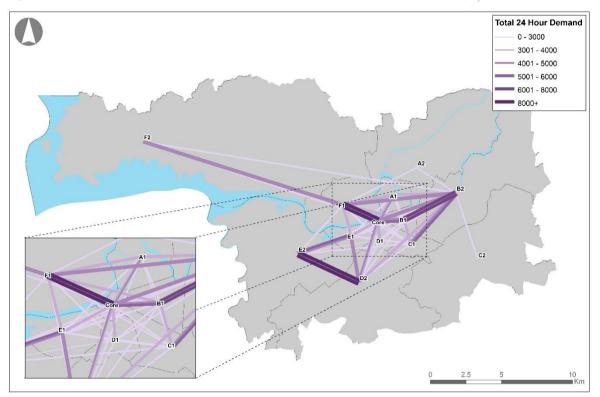



Figure 5-13 Corridor F 2040 Activity Density

6 Combined Demand Analysis

6.1 Desire Line Analysis

To assess the cumulative impact of the 2040 corridor demand outlined in Section 5 and to identify key desire lines to be served by all modes, desire line maps were produced based on the OD matrices presented in Table 5.1 to Table 5.4. The desire lines for total 24-hour demand are shown below in Figure 6-1 (Note demand below 1,500 trips has been excluded). As shown, there is significant demand between the core and F1, B1 & B2 and D2 and E2.

To understand the potential demand for an improved public transport network and potential road improvements, the AM public transport and road demand desire lines have also been mapped and are shown in Figure 6-2 and Figure 6-3. The 2040 public transport demand shows a strong demand along Corridor B to the Core and F1. There is also strong public transport demand between D2 and the city core.

The AM road demand shows strong demand between D2 & E2, F1 & F2, from B2 to B1 and C1 and between B2 & F1.

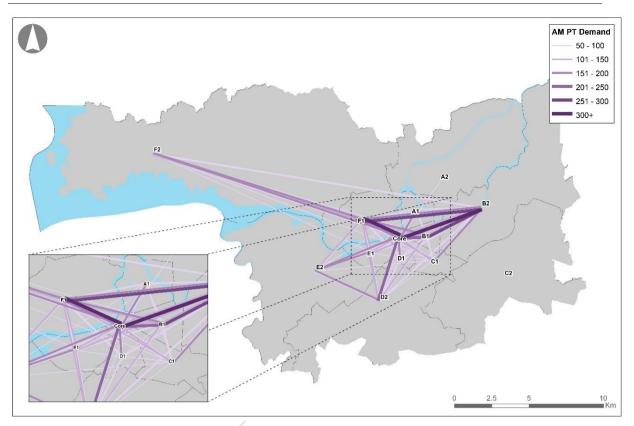


Figure 6-2 2040 AM PT Demand Desire Lines

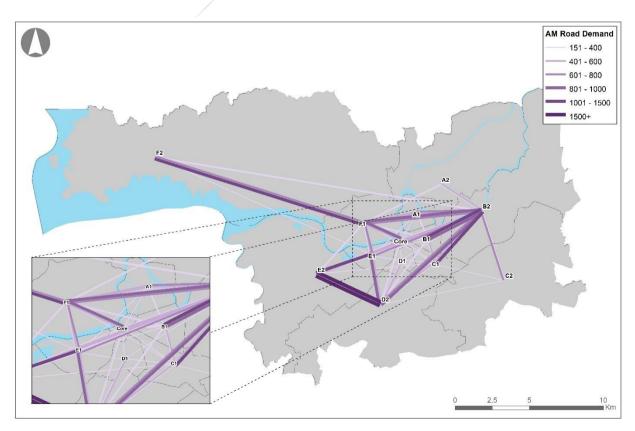


Figure 6-3 2040 AM Road Demand Desire Lines

6.2 Spider Web Analysis

To further refine the 2040 corridor demand shown in the desire line maps into a more understandable and coherent framework the demand was assigned onto a simplified 'Spider's Web Network'. Demand by each mode was assigned onto the 'Network' using different assumptions, as follows:

- For Car demand is was assumed that demand would use the quickest path based on journey time. Generally, demand was routed orbitally around the city unless travelling to destination on the direct opposite side of the City Core, in which case it was assigned through the City Core. For example, demand from B2 to D1 would travel via B1-C1 to D1 and demand from F2 to C1 would travel via F1-Core to C1;
- For public transport demand, it was assumed that demand from each corridor could travel orbitally to adjacent corridors within the inner core. All other demand was routed radially through the city core. For example, PT demand from Corridor D would travel orbitally to Corridor E. For example, public transport demand from Raheen would travel to Ballinacurra and across to a destination along Dock Road without going into the city centre. But demand from Raheen to University of limerick would travel through the City Core to Corridor B as B is not an adjacent corridor to D. One exception to this was PT demand between E & F which was assumed to be routed through the Core as no road link exist between the corridors bar the Shannon tunnel;
- Active mode demand, i.e. walking and cycling, were assumed to take the most direct route in terms of distance to their destination segment.

The 'Spider's Web Network' created using this approach for the AM peak hour for all demand, public transport demand and road demand, including and excluding demand from outside the L-SMA, is shown in Figure 6-4 to Figure 6-6.

Figure 6.4 shows the highest total demand is from B2 to B1 and from F1 into the city core with high demand inbound from E2 & D2 also. In terms of public transport demand there is an obvious emerging corridor from B2 to F1 via the city centre. There is also strong demand from D2, E2 and F2. Figure 6-6 and in particular Figure 6-7 show a strong southern orbital road demand corresponding to the M7 corridor with strong inbound and outbound demand from/to D2 and B2.

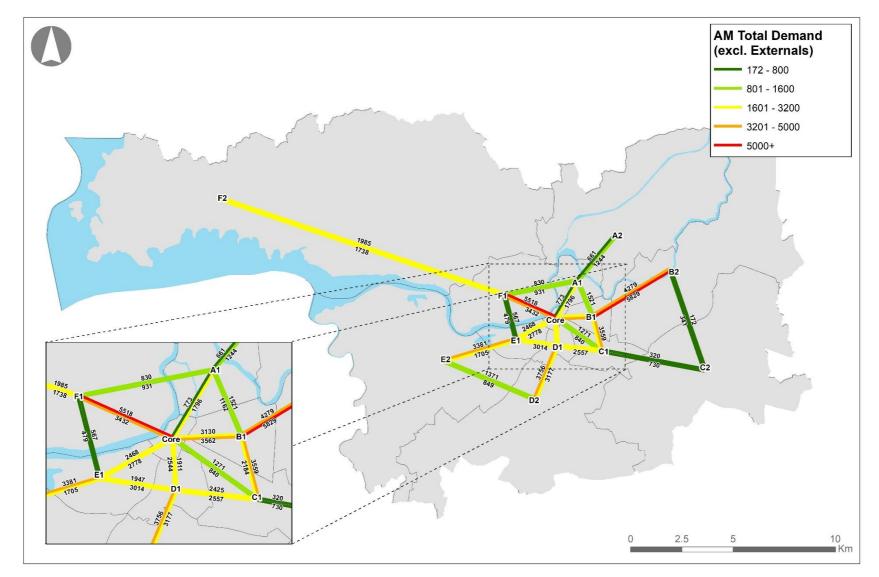


Figure 6-4 2040 Total Demand 'Spider's Web Network'

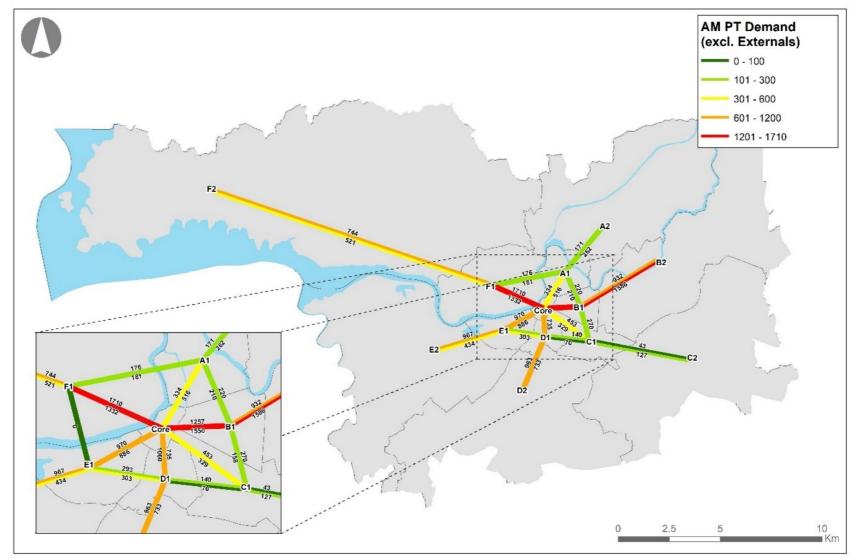


Figure 6-5 2040 AM Public Transport Demand 'Spider's Web Network'

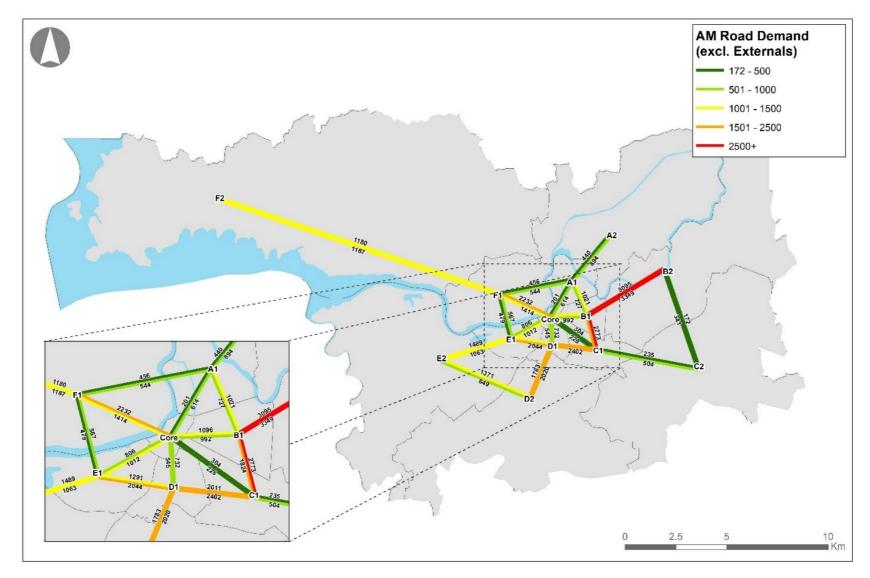


Figure 6-6 2040 AM Road Demand excluding External Demand 'Spider's Web Network'

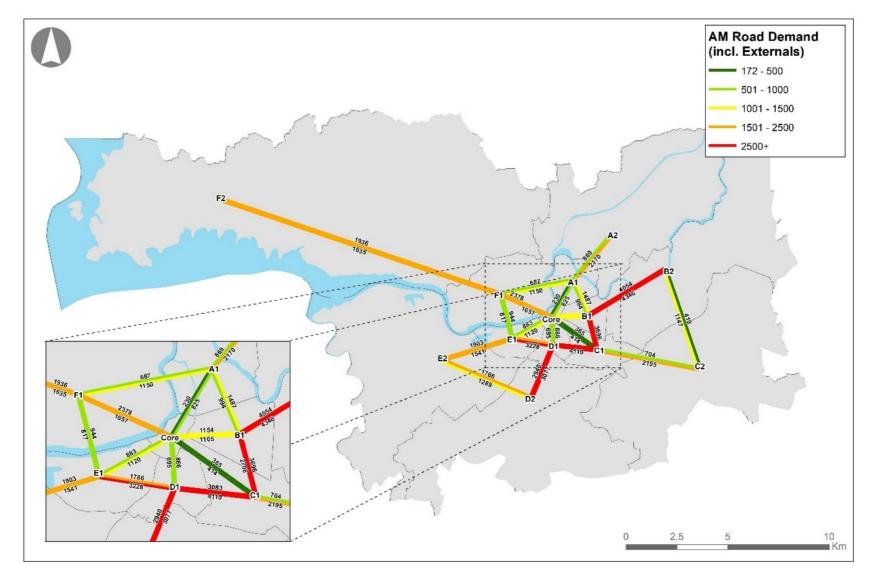


Figure 6-7 2040 AM Road Demand including External Demand 'Spider's Web Network'

6.3 Indicative Public Transport Network

6.3.1 Strategic Cross City Demand

To identify potential high capacity strategic public transport corridors, the two-way cross-city AM peak demand was extracted from the OD matrices presented previously and is shown below in Table 6.1. Note that travel by public transport to the adjacent corridor is considered an orbital movement and not included in Table 6.1.

Table 6.1 Two-Cross City 2040 AM Peak Demand

Corridor	В	С	D	E	F
А	Orbital	116	212	206	Orbital
В		Orbital	558	537	941
С			Orbital	159	295
D				Orbital	506
Е					510

As shown the highest cross city demand is between Corridors B & F. This includes demand to/from F2 however F2 is approximately 23km from the city centre with no population centres in between and may be suited to a frequent shuttle service to the city than a higher capacity cross city service. Table 6.2 shows the cross-city demand with demand to/from F2 excluded.

Table 6.2 Two-Cross City 2040 AM Peak Demand (excl. F2)

Corridor	В	С	D	Е	F
А	Orbital	116	212	206	Orbital
В		Orbital	558	537	681
С			Orbital	159	207
D				Orbital	367
Е					364

Based on the above table, there are 3 emerging cross city routes from Corridor B to D, E & F1 that could be served by a higher frequency and/or capacity service and additional priority. Corridors D & E could potentially be served by one service utilising the R526/O'Connell Avenue which would serve areas of higher densities along both corridors. The remaining demand to/from Corridors A & C could be served by reasonable frequency bus services with orbital services running north and south of the city catering for remaining orbital demand. Figure 6-8 shows the emerging indicative public transport network.



Figure 6-8 Indicative Overall Public Transport Network

6.4 HGV Demand Analysis

Transport Infrastructure Ireland (TII) undertook a Limerick HGV Study in 2015 to assess the possibility of an HGV ban in Limerick City like that operating in Dublin. The Findings Report indicated that HGV's typically account for fewer than 3% of vehicles in Limerick on an average weekday. The analysis in the Report supported a position however that banning HGV's from the City Centre or a combination of banning HGVs and lifting Tunnel tolls for HGV would have a significant impact on the number of HGVs and Light Goods Vehicles through and around the city resulting in a more pedestrian and cyclist friendly city. However, further analysis was required to determine the impact upon hauliers, retailers and the level of additional funding obligation on the Department of Tourism, Transport and Sport (DTTAS) as a result in drop of tolling revenue.

To assess the level of HGV demand in the 2040 scenario the HGV links, flows were extracted from the Idealised Network Scenario for the AM peak hour and are shown below in Figure 6-9. The figure shows high levels of demand across the National Network and in particular the M20 & M7 corridors.

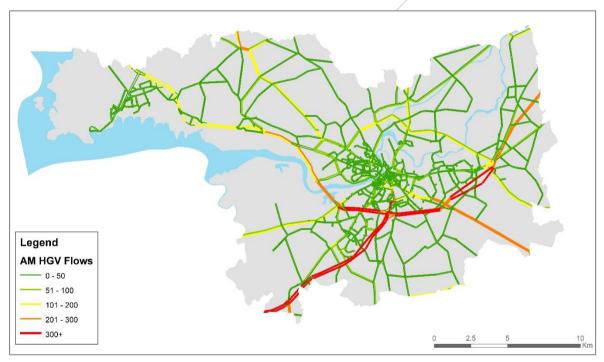


Figure 6-9 2040 AM Peak Hour HGV Link Flows (PCUS)

In addition to the above, the HGV demand has been assigned onto the 'Spider's Web Network' as shown in Figure 6-10. Overall, it shows a similar pattern to the above figure with strong demand Orbitally and on corridors aligned with the national road network. There is higher demand along Corridor E likely to/from Foynes Port however in reality this demand may use the N20/M20 corridor than the N69 and travel through corridor D.

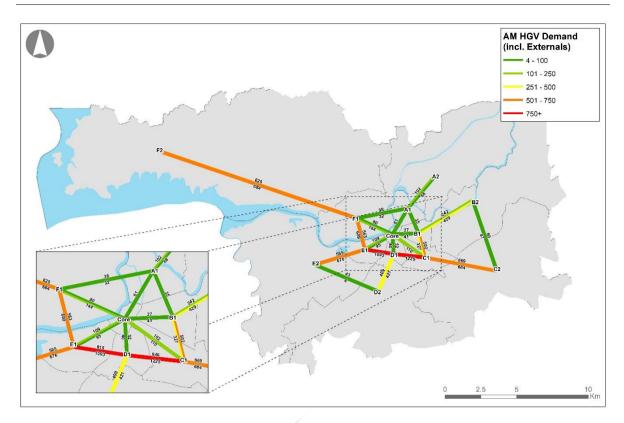


Figure 6-10 2040 AM Peak Hour HGV Demand 'Spider's Web Network