National Transport Authority (NTA) ## **DASHBOARDS** Sub-title ### National Transport Authority (NTA) #### **DASHBOARDS** **FINAL REPORT (VERSION 1.0) CONFIDENTIAL** PROJECT NO. 70081919 OUR REF. NO. 70081919 **DATE: NOVEMBER 2022** WSP WSP House 70 Chancery Lane London WC2A 1AF Phone: +44 20 7314 5000 Fax: +44 20 7314 5111 WSP.com ### **DASHBOARDS** The following dashboards provide a concise overview of the different measures and their relevance for being pursued across the Greater Dublin Area (GDA). This includes reference to freight objectives. | ALTERNA
VEHICLE F | | | | Freight
Sector | Road
(Haulage/Courier) | 4 Rs | Re-n | node | Technical
Maturity | Initial real-
world
operation | Commerci
Maturity: | | Opera
comme | | | |-----------------------------|--|--|------------------------|---|---|--|-----------------------------|------------|--|-------------------------------------|---|-----------|----------------|-------|--| | Definition:
[Trajectory] | A range of alternatives
Compressed Natural C | fuels and drivetrains to tradi
s are in development includi
ias (CNG). Alternative fuels a
aust emissions. However, for
mercial operation. | ng batte
re esseni | ry electric vehicl
tial in the decarb | les (BEVs) and Hydrogen ver
conisation of freight transpo | nicles, as well as bi
ort and in reducing | iofuels and
g the public | health | Geogr | agory
raphical
cability: | Cles | iner Tr | ansport | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | | Tesla
Tesla Semi
[Battery electric truck | Tesla CEO Elon Musk said | d that the | Semi would co | Class 8 semi-truck in develo
me standard with Tesla Aut
es \$200,000+ in fuel savings | opilot that allows | semi-auton | omous d | riving on highwa | ys. Electric ene | rgy costs are half | those | of diesel. V | Vith | | | | Nikola
Nikola Two
[Fuel cell electric
vehicle] | Nikola ikola Two ikola Two electric was electric motors to propel the vehicle. The major benefit of Hydrogen over electrification is its flexibility. A Hydrogen truck can be refuelled in approximately the same time as a diesel truck and the operating range and operating patterns are similar meaning that Hydrogen-powered trucks could fit into the existing logistics system without too much change. However, Hydrogen is much more energy intensive than electricity and consequently is inherently more expensive for the economy, the environment and probably for the vehicle operator. Scania thanol trucks with hybrid, electric or hydrogen options. It's a completely natural, sustainable and renewable fuel source, and it's available now. Biogas is produced by the natural breakdown of food and sewage waste. It uses a process called anaerobic digestion to split waste material into gas (biofuel) and solids (bio fertilizer). | | | | | | | | | | | | | | | | Scania
Bioethanol trucks
[Biofuel vehicle] | vehicle] consequently is inherently more expensive for the economy, the environment and probably for the vehicle operator. Scania ethanol trucks iofuel vehicle] Waitrose Waitrose Consequently is inherently more expensive for the economy, the environment and probably for the vehicle operator. Biogas is the most commercially viable way to reduce CO2 emissions for transport. It provides cleaner, greener and quieter operation with significantly lower costs than those associated with hybrid, electric or hydrogen options. It's a completely natural, sustainable and renewable fuel source, and it's available now. Biogas is produced by the natural breakdown of food and sewage waste. It uses a process called anaerobic digestion to split waste material into gas (biofuel) and solids (bio fertilizer). Waitrose is expected to order 40-60 new Bio-CNG trucks every year until the HGV fleet is 100% Bio-CNG by 2027/28. Operating dedicated gas trucks has transitioned from being a trial, to being 'business as usual', with positives on carbon reduction, driver acceptance and cost. Waitrose have saved up to 40% on their fuel bill by making the switch to Bio-CNG with new stations. | | | | | | | | | | | | | | | | Waitrose
CNG HGVs | [Biofuel vehicle] sewage waste. It uses a process called anaerobic digestion to split waste material into gas (biofuel) and solids (bio fertilizer). Waitrose Waitrose is expected to order 40-60 new Bio-CNG trucks every year until the HGV fleet is 100% Bio-CNG by 2027/28. Operating dedicated gas trucks has transitioned from being a trial, to being 'business as usual', with positives on carbon reduction, driver acceptance and cost. Waitrose have saved up to 40% on their fuel bill by making the switch to Bio-CNG with new stations. | | | | | | | | | | | | | | | Opportunities | Pairing with renewabl | e energy generation to creat | te net ze | ro carbon logisti | ics, creating refuelling/recha | rging hubs aroun | ıd sites such | n as ports | and warehousin | g sites which g | enerate a lot of H | GV trip | 95 | | | | Barriers | | rrently limited by productio | | | | | | | | | | | | | | | Local Relevancy | burgeoning industrial,
regional consignment | nlikely to subside because of
Mogistics parks with large LG
is along the primary route ne
HGVs so failure to support t | V fleets :
twork; p | should be the tra
roviding infrastr | ailblazers for EV technology.
ructure can be located at str | The shift towards | s hydrogen | and CNG | should also be le | d by larger flee | t operators, espe | cially th | nose carryi | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | | Economy | | | | Environment | t | | | s | ociety | | | | | | | | | | fleets, delay mitigation and
e time and costs | Med | | pact of the sector through a
n in other forms of pollution | | | Max | | | o reduce the nun
arly linked to vulr | | | , Min | | | | | ss skills shortages, support
irastructure provision | Med | Greenhouse g
Reduction in g
net-zero by 209 | reenhouse gas emissions fro | om the sector to a | achieve | Max R | ommunity distu
educe the impac
uality and inform | t of freight on o | communities, nois
ny parking | se level | ls, air | Med | | | | ivity seamless intermod
national freight moveme | lal activity to support local,
ents across the area | Min | | e intrusive impact of freight
ocal, protected settings | transport on visua | al | Med B | _ | _ | use planning, der
better freight dat | _ | ient, | Min | | | CHARGING
INFRASTRU | | Mode
Relevar | | .0.0, .0. | Freight
Sector | All sectors | 4Rs | Re-n | node | Technical
Maturity | Initial real-
world
operation | Commercial
Maturity: | | rating
nercially | |--|--|--------------------------------|--|-------------------------|--|--|---|-------------------------------|-------------------------|--|-------------------------------------|---|--------------------|---------------------| | Definition:
[Trajectory] | and energy/u
through publi | tility networ
ic and privat | cture is a core componer
ks connected into a distr
te investment to serve th
pularity. Compressed Nat | ibution (
e road fr | grid. Electric Vehicle ch
eight sector alongside | harging networks have
an emergence of hyd | e grown substant
Irogen stations se | ially in recer
erving HGVs | nt years
; the latte | Geogra | gory | Clean | er Transport | !A | | Best Practice | | | efficiently with a networ | | | | se Cases | | | Applic | ability: | | € 10 0 16 5 | | | | EV Charging
Wien En
[Vienn | ergie | Roll out of public EV char
mission2030 to be carbo
complemented by additi | n neutra | within the decade. As | dditional 'demand orie | entated' stations a | are also beir | ng installe | d whilst the 'basic | : network' cove | ring mainly fast ch | | | | | Hydrogen F
Station, I
[Aberde | вос | Aberdeen City Council in
vans & HGVs. The site has
fleet of 10 buses (or equiv | the cap | acity to
produce 360k | g of hydrogen daily; er | nough for the cur | rent fleet of | 10 x 42-se | at buses to trave | up to 350km e | each day. Over a fo | ur-year perior | d, a small | | | Electric His
Ecotric
[UK] | ity | Ecotricity, in partnership
anxiety", one of the barrie
sources to power longer | ers to ele | ctric vehicle adoption. | | | | | | | | | | | | CNG Net
Foresight
[UK] | Group | CNG Fuels opened its fift
quadrupling the compar
Fuels has secured a pipel
such as Eurocentral, near | ny's capa
line of de | city and enabling it to
welopment sites on m | refuel 8,000 vehicles a
ajor trucking routes to | a day. The fuel is 3
o serve fleet opera | 35%-40% che | eaper that | n diesel and cuts: | vehicle greenh | ouse gas emission | s by up to 85% | %. CNG | | Opportunities | The key ingre | dient for a q | uick transition towards a | zero-ca | bon future with addit | ional charge points fa | cilitating the expa | ansion of ad | ditional w | ehicle sales and w | olumes. | | | | | Barriers | Investment ar | nd support i | irom national governmer | nt toward | ls decarbonising trans | sport and providing th | e road freight sec | tor with the | time and | lincentive to mak | e the transition | n. | | | | Local Relevancy | being sight at | t major trip a | with progress already un
attractors and servicing la
solution which can be so | arger flee | t operators travelling | along radial route alor | ng the primary ro | ute network | coutside (| | | | | | | | II. | | | | lmj | pact on Freight | Objectives | | | | | | | | | Economy | | | | | Environment | | | | S | ciety | | | | | | Freight efficiency
Improved journey
improved supply o | times, optimise | | ets, delay mitigation and
me and costs | Max | II | of the sector through a
ther forms of pollution | | | Max In | - | | reduce the numb
orly linked to vulne | | ts Min | | Industry contribu
Improved jobs and
for inward investm | l opportunities | | kills shortages, support
tructure provision | Med | Greenhouse gas em
Reduction in greenh
net-zero by 2050 | nissions
nouse gas emissions fr | om the sector to a | achieve | Max Rx | ommunity distur
educe the impact
ality and informa | of freight on o | ommunities, noise
ry parking | levels, air | Min | | Connectivity
Improved connect
national and inter | | | activity to support local,
s across the area | Med | Urban realm
Minimising the intru
amenity and local, p | sive impact of freight
rotected settings | transport on visua | al | Med B | | | use planning, deve
better freight data | opment, | Max | | CARGO HA | | Mode
levance | <u> </u> | 3 | Freight
Sector | Rail, Sea (Ports/IWW) | 4Rs | Re-du
m | ice, Re
ode | Technical
Maturity | Technical operation | Commercial
Maturity: | New commoperati | | | |-----------------------------|--|--|--|-------------------------------------|--|--|---|-----------------------------|-------------------|--|-----------------------------------|---|-------------------------|-----|--| | Definition:
[Trajectory] | port/dock facility to lift
largely diesel-based ar | t or move co
nd involves :
quarter of t | ontainer, bulk, or
a lot of CO2 emis
he total emission | liquid ca
sions wi
ns attribu | rgo carried by s
th equipment, ir
rted to a site. Ha | cle or equipment used in the
hip, train, or another vehicle.
ncluding reach stackers and e
andling goods can also be no
ods. | Cargo handling e
empty container l | equipment
handlers – | is still | Geogr | egory
aphical
ability: | Cleaner | Transport | | | | Best Practice | | | | | | Us | e Cases | | | | | | | | | | | Electric Top Handlers
Everport Terminal
[Los Angeles] | of a port
battery o | 's drive for clean
designed to oper | cargo-h
ate for u | andling operation
p to 18 hours be | g Demonstration Project, the
ons. The battery-electric top h
tween charges. Each top han
e commercially feasible soluti | nandlers, which ar
ndler has a data lo | re off-road
ogger for tr | vehicle
acking | s with an overhead
hours of operation, | boom for loadir
charging frequ | ng containers, run on
ency, energy usage a | a one-megav
nd other | - | | | | Hydrogen Container
Yard Crane, KICT
[Japan] | improve
RTG mat | s fuel consumpt
tches the concep | ion by 20 | 30% and reduc | try (RTG) container yard cran
les emissions of CO2 and othe
(CNP), which is an initiative | er harmful substa | ances in die | esel exh | aust in comparison | with convention | nal fuels. The introdu | iction of the N | NZE | | | | Renewable Diesel Fue
Fenix Marine Service
[Los Angeles] | RTG matches the concept of Carbon Neutral Port (CNP), which is an initiative of Japan's Ministry of Land, Infrastructure, Transport and Tourism aimed at achieving decarbonization in ports and harbours The Fenix Marine Services, a container terminal at the Port of Los Angeles that handles 2m containers a year, has transitioned its entire fleet of more than 300 pieces of container-handling equipment, as well as some support vehicles, from fossil-based diesel fuel to renewable diesel fuel, a blend made 80% of recycled organic oils and animal fats, and 20% of biomass. Fenix has been able to immediately and significantly reduce its harmful emissions while also minimizing its costs and the time required for such a transformation. The change does not require any | | | | | | | | | | | | | | | Opportunities | New equipment is bei | ing trialled g | lobally and intro | duced a | s a key way for p | orts and rail yards to reduce | emissions, with w | vider bene | fits to s | ociety from lower no | oise pollution. | | | | | | Barriers | Making the transition | towards ele | ctric or hydroge | n fuelled | handling equip | ment will require investment | t in fuelling infrast | tructure or | n site. T | his will take time. | | | | | | | Local Relevancy | turnaround of ships ar | nd better us | e of the space av | /ailable v | vithin the Port. S | ng equipment as part of its 20
Space is a key constraint, but
require less substantial mech | future investmen | nt could loc | k to up | grade equipment t | | | | | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | | Environmen | t | | | | Society | | | | | | | | times, optimised use of
hain connectivity to sav | | | Max | | npact of the sector through a
on in other forms of pollution | | | Max | Safety
Improve the safety
involving goods ve | | reduce the number | ofaccidents | Mii | | | | tion
I opportunities to addre
nent, land availability, inf | | | Min | Greenhouse g
Reduction in g
net-zero by 20 | greenhouse gas emissions fro | om the sector to a | ichieve | Max | Community distur
Reduce the impac
quality and inform | t of freight on c | ommunities, noise le
ry parking | wels, air | Ma | | | | ivity seamless intermod
national freight movem | | | Max | | e intrusive impact of freight t
ocal, protected settings | ransport on visua | al | Min | Placemaking
Better integrate fre
construction and s | | use planning, develop
better freight data | oment, | Mii | | | E-CARGO E | BIKES Mode I | Relevance | ÆÌ ■ | Freight
Sector | Last Mile
Logistics | 4Rs | Re-m | ode | Technical
Maturity | Initial real-
world
operation | Commercial
Maturity: | Operating commercially | | | | |--------------------------|---|---|--|--
--|--|---|--|--|---|--|--|--|--|--| | Definition: | traditionally made by li
efficiently transport car | ght goods vehicles (LGV
go with zero emissions | /s), whilst us
at street lev | ast mile freight transport
ing a fraction of the road
el, with some variants ab | Ispace. Being electri
le to carry loads of 2 | cally assisted, the
50kgs+. Addition | ey enable the
nally, where | | Cate | | New I | Modes | | | | | [Trajectory] | infrastructure allows, th
conveniently near to th | | | efficiently move around a
o pedestrianised areas. | city and their smal | ler size allows the | em to be park | ked more | Applic | | | BAR S | | | | | Best Practice | | | | | U | se Cases | | | _ | | | | | | | | | Outspoken Cycles
Zedify
[UK] | At the hubs, items and distances, if needed. | e sorted into
Clients inclu | n cargo bicycles and tricy
local, digitally-tracked d
de online retailers, logist
Glasgow and most recen | lelivery rounds and :
ics carriers, as well a | sent to their final | addresses by | y specially | adapted cargo | bikes carrying | up to 250kg – or elect | ric vans for longer | | | | | | DHL
City Hub
[Utrecht, Netherlands] | containers for the DH
centre, where the cor
up to 60% of inner-cit | IL Cubicycle
ntainers can
ty vehicle ro | y Hub concept that will e
, a customised cargo bic,
be quickly loaded on to
utes in some European c | ycle which can carry
two Cubicyles for la:
ountries with cargo | a container with
st-mile inner-city
bicycles and the | a load of up
delivery. It ca
y plan to roll | to 125 kg
an then be
out the ap | one cubic mete
reloaded for ou
proach more w | r in volume). A
tbound shipn
idely over the | A DHL van delivers the
nents. DHL Express ha
next 3-5 years. | trailer into the city
as already replaced | | | | | | Hereford Pedicabs
Pedicargo
[Hereford] | then shred, compact
a lack of trade waste
Having rapidly grown | and send it
recycling fa
n, they now : | cilities in Hereford, they n
operate a fleet of e-cargo | is then invoiced at
now provide an easy
bikes and prevent | the end of the m
way to recycle w
over 10,000kg of r | onth to colle
raste, much c
recyclable wa | ct cash fro
of which w
aste from s | m the clients. H
ould ordinarily g
going to landfill | aving diversifi
go to landfill de
every week. | ed from a pedicab ser
espite 80% of the wast | vice after identifying
te being recyclable. | | | | | Major Market
Failures | General Challenges | then shred, compact and send it for recycling. The service is then invoiced at the end of the month to collect cash from the clients. Having diversified from a pedicab service after identifying a lack of trade waste recycling facilities in Hereford, they now provide an easy way to recycle waste, much of which would ordinarily go to landfill despite 80% of the waste being recyclable. Having rapidly grown, they now operate a fleet of e-cargo bikes and prevent over 10,000kg of recyclable waste from going to landfill every week. Previous work has identified that e-cargo bike operators face a number of challenges which affect their ability to compete with traditional van traffic. Firstly, in logistics, e-cargo bike operators are subject to strong downward price pressures and the margins in logistics are quite slim, making expedient or risky investments very difficult. Furthermore, as a relatively new | | | | | | | | | | | | | | | Opportunities | Links to micro-consolid | lation centres and mobi | ility hubs, lo | gistics centred developm | nent. | | | | | | | | | | | | Barriers | | | _ | ads, not suited to all locat | | _ | | | | | | | | | | | Local Relevancy | movement of goods by
closures or a CAZ) whils | bike. E cargo bikes are
at there are plentiful op-
ent Strategy. E cargo b | likely to hav
portunities f
ikes can fon | re are issues with its attra
e a competitive advanta
or established couriers a
n part of a more intermo
nile' schemes. | ge over other vehicl
nd third part logistic | es especially who
s providers to re | ere measures
mode from n | are introd
new and po | duced to limit ar
otential consolid | d restrict vehi
lation points v | icle access (pedestrian
vithin the cordon area | nisation, timed
defined by the | | | | | | | | | Impa | ct on Freight | Objectives | | | | | | | | | | | Economy | | | | Environment | | | | So | ciety | | | | | | | | | times, optimised use of fi
hain connectivity to save | | and Max | Air quality
Reduce the impact of t
and a reduction in other | | | | Max Imp | ety
prove the safety
olving goods ve | | to reduce the number | of accidents Max | | | | | | tion
I opportunities to addres
ent, land availability, infr | | ort Max | Greenhouse gas emiss
Reduction in greenhou
net-zero by 2050 | | om the sector to | achieve | Max Red | mmunity distur
duce the impact
ality and informa | of freight on | communities, noise le
rry parking | vels, air Max | | | | | | ivity seamless intermoda
national freight moveme | | al, Max | Urban realm
Minimising the intrusiv
amenity and local, prot | | transport on visu | al | Max Bet | | | use planning, develop
, better freight data | pment, Max | | | | | WATERBOO
FREIGH | | | <u> </u> | Freight
Sector | Haulage | 4Rs | Re-m | node | Technical
Maturity | Technical operation | Commercial
Maturity: | Commen
Operatio | | | | |-----------------------------|---|--|--|--|--|---|--|---|--|--------------------------------|--|--------------------------------|--------------|--|--| | Definition:
[Trajectory] | little traffic and run righ
watersides for goods tra
to reach areas inaccessi
river courses. Waterbou | often an underutilised asso
nt through the heart of ma
anshipment without need
ible for other vehicles and
urne freight is apt at carryi
filiated infrastructure requ | any of our
ling to int
can be u
ng non-ti | towns and cities. There is
erface with road traffic. Ed
ed as compounds for cor
ne dependent, non-peris | s an opportunity to o
qually, waterbourne
nstruction activity to
shable bulky goods | connect transpor
e freight can be u
aking place cana | t networks a
sed for acce
Iside or adja | and
ssing hard
cent to | Cate
Geogra
Applic | phical | New 1 | Modes | | | | | Best Practice | | | | | Us | se Cases | | | | | | | | | | | | River Barges
Vert chez Vous
[Paris] | on the river Seine, with | 5 pre-set | ow emission vehicles, cor
tops per day with seamle
ch day. Space constraint | ess transition and h | andling of goods | between m | odes. Each | trike has a 2m | argo hold, wh | | | | | | | | Green Highway
Ship Canal
[Manchester] | canal barge service link
equating to a saving of | ing Liverp
180kgs of | | es as a 'green highw
potential to save an | vay' and provides
additional 2,000 | an alternati | ve to the co | ingested moto | rway network | in the North West; wit | th each journey | y | | | | | Aggregate Shipments
Hanson, Grand Canal
[London] | [Manchester] equating to a saving of 180kgs of CO2 emissions, with the potential to save an additional 2,000 tonnes of CO2 per annum. Until recently the service carried only containers, but the carriage of a giant chemical tank to a facility at Runcom saw the start of non-containerised traffic ggregate Shipments anson, Grand Canal [London] The shipment of 450,000 tonnes of aggregate started in 2003 as part of a new initiative to move sand and gravel by water and avoid using congested local roads (with width restrictions
also in place) from the gravel pit to a canalside concrete making plant owned by Hanson, the international construction materials group at Stockley Park, West London. Up to 60,000 tonnes was move by four crafts annually over a distance of 5 miles: with sometimes two journeys a day. This culminated into taking off 6,000 lorry movements off the network each year. New Lock System The Albert canal, located in the eastern part of Flanders and used as a vital connection between industrial zones around Liege with the harbour of Antwerp, recently invested in new lock | | | | | | | | | | | | | | | Major Market
Failures | [London] was move by four crafts annually over a distance of 5 miles: with sometimes two journeys a day. This culminated into taking off 6,000 lorry movements off the network each year. | | | | | | | | | | | | | | | | Opportunities | Increasingly popular as | a cost-effective means fo | r transpor | ting bulkier goods and re | emoving HGV traffic | from sensitive ar | nd hard to re | each urban | areas. Can inte | grate with oth | ner land uses and trans | sport networks | š. | | | | Barriers | Does require handling a | and canal/riverside infrast | ructure (r | nini ports) and enhanced | integration with po | ortside facilities (if | f required). F | liver and ca | nals must be n | avigable and f | future proofed for long | g term use | | | | | Local Relevancy | provision to support wa
Waterbourne freight co
the edge of the GDA/Du | of navigable watercourse
sterbourne freight and tra
ould refer to carrying aggr
ublin, through to smaller of
ts destined for the city cer | nshipmer
egate and
consignm | t/goods handling betwee
construction materials (I
ents of parcels and more | en modes, the Gran
bulky loads) with hi
time critical deliver | d Canal and the l
gher capacity loa
ies using passens | River Liffey a
ids, at a slow
ger services : | re radial in
pace that a
and last mil | nature; connec
avoids congest
le deliveries by | ting the hinte
on and reduc | erlands of the GDA to t
es HGV volumes betw | he core of Dub
een compound | olin
ds (| | | | | | | | Impa | ct on Freight | Objectives | | | | | | | | | | | Economy | | | | Environment | | | | Soc | iety | | | | | | | | | | leets, delay mitigation and
time and costs | Max | Air quality Reduce the impact of the | | | | | - | | to reduce the number | of accidents | М | | | | | | s skills shortages, support
astructure provision | Med | Greenhouse gas emiss
Reduction in greenhous
net-zero by 2050 | | om the sector to a | achieve | Med Red | nmunity distur
uce the impact
lity and informa | of freight on | communities, noise le
rry parking | wels, air | M | | | | | ivity seamless intermoda
national freight movemer | al activity to support local,
nts across the area | Max | Urban realm
Minimising the intrusive
amenity and local, prote | | transport on visua | al | Max Bett | | | use planning, develop
, better freight data | pment, | М | | | | FREIGHT
PUBLIC
TRANSPO | C Mode
Releva | | <u> </u> | Freight
Sector | Haulage/
Courier | 4Rs | | e, Re-time
duce | Technical
Maturity | Technical
operation | Commercial
Maturity: | Comme
Operat | | | |------------------------------|--|---|--|--|--|--|---|--|--|--|---|--|------------------------------|--| | Definition:
[Trajectory] | travel by road. This is a
onward delivery. Simila
much-needed revenue | ajor transport interchange
benefit to logistics as it is
orly, buses are running belic
stream and it would in tu
and freight to create the m | to passeng
ow capacit
rn improv | ers and could allow e ca
y and supplementing the
the experience for past | argo bikes to collect
ne movement of peo
sengers. The routing | parcels offloade
ople with freight
g algorithms tha | d from train
would add a
t underpin [| s for
another
DDRT coul | Geogra | gory
aphical
ability: | New h | Modes | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | GB Railfreight Freight trail [UK] HobbyDB PostBus | trial shipment of NHS s
freight terminals or plai
test was to ensure that
conveyed within each v
PostBus Switzerland is
passengers are mostly s
with a population great | upplies on
tform-side
the cages
ehicle with
a subsidiar
separate in
er than 40 | is entitled to regular bu | e West Midlands to
has a station and ap
ed from the trains e
modified seating arr
Post, which provide
us still exists to conr
is services. The frequ | London route in
opropriate road a
xisting door arra
angement."
es regional and ro
nect to post officuency of these se | 2020, and si
access. The t
angement, w
ural bus serv
es in periph | aid that w
rain was l
vith minin
vices throu
eral region | ith minor interior
baded with cages
lal modifications,
lighout Switzerlar
lis. The federal lav | modifications
that can each
and to see ho
nd, and also in
v and the Swis | , it could be loaded in
carry 200kg of packa
w many of the parcel of
France and Liechtens
s Constitution stipulat | both dedicate
ges and parc
cages could be
tein. Whilst pose
that every v | ed
els, Tr
e
ost ar | | | | PostBus [Switzerland] passengers are mostly separate in Switzerland, the PostBus still exists to connect to post offices in peripheral regions. The federal law and the Swiss Constitution stipulate that every village with a population greater than 40 is entitled to regular bus services. The frequency of these services is in direct proportion to the population density, however, for the most remote communities, combining postal and passenger movements makes commercial sense. Using the Greyhound Coach network, and available space on coaches, the Greyhound Freight division delivers over 220,000 freight items each year from major capital cities and country towns to the most remote places in Australia. Greyhound Freight offers competitive rates, and as parcels travel on regular scheduled services, and there is no need to wait for a full freight load to depart. As soon as freight has been received in their depot, it departs on the next available coach service. Royal Mail Royal Mail postbuses used to be a common sight in some rural areas across the United Kingdom, most notably across the Yorkshire Dales and South West Scotland, but as the needs of | | | | | | | | | | | | | | | Major Market
Failures | Royal Mail
Postbus
[UK, Historic] | passengers and freight | diverged, | common sight in some
so did the respective ser
n of public transportatio | vices. The postbus v | vas originally cre | ated to repl | lace rapid | y declining local l | bus and rail se | rvices across remote lo | | | | | Opportunities | Creating consolidation | hubs at rail stations to cre | ate a mod | al interchange for good: | s for onward deliver | y by last mile mo | odes | | | | | | | | | Barriers | | moving freight alongside p | | - | | | | | | | | | | | | Local Relevancy | many operators will be
along arterial routes ra
supplement the scaling | not yet been explored to
exploring new revenue st
diating from Dublin is par
g up of e cargo bike whilst
ng pre-existing vehicle se | reams to d
ticularly co
freight on | omplement a core, but
nducive to shipping goo | reduced commuter
ods efficiently; with | and leisure offer
first & last mile lo | r. The densit
ogistics in pl | y of rail ar
ace to trai
 id tram connectionsfer goods (paro | ons and impro
els) between o | vernents to bus provis
rigins and destination | ion and prior
s. This would | ity | | | | | | | lmpa | ct on Freight | Objectives | 1 | | | | | | | | | Economy | | | | Environment | | | | s | ociety | | | | | | | | | fleets, delay mitigation and
e time and costs | i Max | Air quality
Reduce the impact of t
and a reduction in othe | | | | Max In | afety
nprove the safety
volving goods ve | | to reduce the number | of accidents | М | | | | | ss skills shortages, support
rastructure provision | Med | Greenhouse gas emiss
Reduction in greenhou
net-zero by 2050 | | om the sector to | achieve | Med R | ommunity distu
educe the impac
uality and inform | t of freight on | communities, noise le
rry parking | vels, air | M | | | | ivity seamless intermoda
national freight moveme | al activity to support local,
ints across the area | Max | Urban realm
Minimising the intrusiv
amenity and local, prot | | transport on visu | ıal | Med B | | | use planning, develop
better freight data | oment, | N | | | PORT | | Mode
elevance | 200 000 | ìm. | Freight
Sector | Container Haulage
(Freight Forwarding) | 4 Rs | Re- | time | Technical
Maturity | Mature
technical | Commercial
Maturity: | Mature | cial | | |-----------------------------|--|---|--|------------------------------------|--|---|---|---|---------------------------------|---|--|--|----------------------------------|-----------------|--| | BOOKING | SISILIN | | | | 5000 | | | | | | operation | | operatio | ın | | | Definition:
[Trajectory] | harmful emissions, b
of trucks. This results | ut also to ma
in a situatio | ajor inefficiencies
n where demand | in variou
significa | s operations. Th
ntly exceeds su | can lead to serious local envir
ne main cause of truck conge
pply or vice versa. Truck appoind
the waiting times for truck | stion is the fluctu
pintment system | uating arriv
s (TAS) allo | al patte
w ports | ern
Geogr | aphical
ability: | Data and Co | onnectivity | | | | Best Practice | | | | | | Us | e Cases | | | | | | | | | | | 1-Stop
Vehicle Booking
System (VBS)
[Australasia / SE Asi | equipm
rules, ar | nent and inefficien
and create and mai | it practio
intain cu | es. VBS allows t
stomer details. I | ssing the common issues sha
erminal operators to match t
For example, when the quays
ed up to support clearing for | erminal resource
side is busy, land: | es with land
side resour | lside de | emand. Terminals ca | n configure tin | neslots, work-day caler | ndars and bu | siness | | | | Terminal
Appointment
Booking System
[Manila, Philippines | approad
traffic o
port cap | ches. The Termina
ongestion in Man
pacity and ensure | l Appoin
ila but or
the reso | tment Booking
nly served to bri
urces are in pla | vicle booking system that is e
System, or TABS, was a respo
ng the port to a complete sta
ce to handle more predictabl | onse to the truck
andstill with vessi
le volumes and si | ban and ro
el delays of
cheduling. | ad poli
ten me | cies that were introd
asured in weeks. TA | duced by the lo
BS will also allo | cal government in 201
w the terminals to bet | 14 to combat
ter manage t | their | | | | DP World
QLess
[Antwerp, Germany | booking
are alwa
avoid w | g system for termi
ays now reachable
asting hours a da | inal capa
e becaus
y waiting | city manageme
e there are not l
ı in line which, v | ent was implemented, the po
hundreds of trucks blocking o
within the first year of the nev | rt experienced m
common areas. A
v queuing systen | nassive imp
Additionally
n, is expect | roveme
, traffic
ed to re | ents: Firstly, all truck
jams leading in and
esult in eliminating a | lines have bee
lout of the port
at least 730,000 | n eliminated. As a resu
have been eradicated
kilograms of CO2. | ult, exchange
d. Truck driver | areas
rs now | | | Major Market
Failures | Hutchison
Port of Felixstowe
[UK] | QLess twerp, Germany] Hutchison tr of Felixstowe booking system for terminal capacity management was implemented, the port experienced massive improvements: Firstly, all truck lines have been eliminated. As a result, exchange areas are always now reachable because there are not hundreds of trucks blocking common areas. Additionally, traffic jams leading in and out of the port have been eradicated. Truck drivers now avoid wasting hours a day waiting in line which, within the first year of the new queuing system, is expected to result in eliminating at least 730,000 kilograms of CO2. The UK's largest container port, Port of Felixstowe, is making some significant changes to its troubled vehicle booking system (VBS) following criticism from the British International Freight Association to try to prevent container collection slots for box hauliers and freight forwarders being wasted. The failure of the system has come about as a result of a poorly migration to the new systems and a spike in demand for the movement of containers. A statement from BIFA read "BIFA members have suffered from two years of poor service from the port, and we feel | | | | | | | | | | | | | | | Opportunities | Integration with real | -time fleet m | nanagement syste | ems to e | nable flexible sc | heduling dependent on slot | availability to red | luce waiting | g time. | Active routing of dra | yage trucks th | rough the port based | on internal tr | affic. | | | Barriers | Most actors of the po | xrt communi | ity are small-sized | , and str | uggle to fund th | ne investment for developing | or modifying the | eir systems | for con | necting to the book | ing system | | | | | | Local Relevancy | freight traffic now wi
to better utilise and | ith future for
manage limi | ecasting likely to
ted on-site space, | put huge
will help | constraints on
bring benefits | neasure) complements the d
capacity. A booking system to
to journey times, reduce bac
se equally applicable for other | that enables hau
klogs and improv | liers and fre
ve the over | eight fo
all trans | rwarders to better p
shipment experienc | lan journeys ar | nd provides Dublin Por | rt Company (I | DPC] | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | | Environmen | t | | | | Society | | | | | | | | times, optimised use o | | | Max | | npact of the sector through a
on in other forms of pollution | | | Med | Safety
Improve the safety
involving goods ve | | reduce the number o | of accidents | Min | | | | tion
I opportunities to addr
ent, land availability, i | | | Min | Greenhouse g
Reduction in g
net-zero by 20 | greenhouse gas emissions fro | m the sector to a | achieve | Med | Community distur
Reduce the impact
quality and informa | of freight on o | ommunities, noise lew
ry parking | els, air | Min | | | | ivity seamless intermo
national freight mover | | | Max | | e intrusive impact of freight t
ocal, protected settings | ransport on visua | al | Med | Placemaking
Better integrate fre
construction and s | _ | use planning, developr
better freight data | ment, | Min | | | TELEM. | ATICS | Mode
levance | All freight m | nodes | Freight
Sector | Road
(Haulage/Courier) | 4 Rs | Re-route, | , Re-time | Technical
Maturity | Mature
technical
operation | Commercia
Maturity: | CC | Mature
ommercial
operation | | |-----------------------------|--
---|---|----------------------------------|---|---|--|---|--|--|---|---|-----------------------|----------------------------------|--| | Definition:
[Trajectory] | through predictive an
regulations governing | alytics and ac
the industry. | curate reportin
Fleet manager | g. It also
nent car | helps fleet man
also improve o | is while increasing driver sat
agers ensure that their oper
perational efficiency by assi
clude hazard alert services, (| rations are adherir
gning and dispato | ing to the co
ching routes | implex
s to driver | ocog | gory
aphical
ability: | Data an | d Connec | tivity | | | Best Practice | | | | | | U | se Cases | | | _ | | | | | | | | GeoTab
Gnewt
[London, UK] | modified to
compete to
vehicles a | vans has transfo
with ICE deliver
day could be fu | rmed gr
y compa
illy charg | reen deliveries ir
anies which were
ged at first. To co | cle fleet. Delivering zero-em
London – growing from jus
often cheaper. To add to th
Imbat these constraints, driv
s charging operations – one | st a handful of van
nis, there are chary
ve greater scalabil | ns into the U
ging limitati
lity, and pro | JK's larges
ions with
vide a pla | it all-electric fleet
only a finite amou
tform for future in | Gnewt neede
ant of power or
novation, Gne | d to optimise its op
oming into its char | erations
ging depo | in order to
ot. Only 35 | | | | OptimoRoute
[Software] | variable job durations vehicle matching (e.g. loading ramp/refrigeration). List minute orders can be integrated into route plans and automatically recalculated to reflect manual changes. It also integrates with delivery systems to provide proof of delivery, capturing digital signatures and sending messages to customers informing them when the driver is scheduled to arrive. Zedify built their own robust, efficient technology platform that addresses the specific demands of providing predominantly cargo bike based city logistics. Routes are optimised daily meaning deliveries are made as quickly and efficiently as possible. Barcode scanning enables consistency with other systems in the supply chain. Digital proof of delivery capture provides end-to-end tracking and client login means deliveries can be booked and tracked and reports accessed directly. | | | | | | | | | | | | | | | | E-cargo bikes
Zedify
[UK, Nationwide] | Software] Variable job durations vehicle matching (e.g. loading ramp/refrigeration). List minute orders can be integrated into route plans and automatically recalculated to reflect manual changes. It also integrates with delivery systems to provide proof of delivery, capturing digital signatures and sending messages to customers informing them when the driver is scheduled to arrive. Zedify built their own robust, efficient technology platform that addresses the specific demands of providing predominantly cargo bike based city logistics. Routes are optimised daily meaning deliveries are made as quickly and efficiently as possible. Barcode scanning enables consistency with other systems in the supply chain. Digital proof of delivery capture provides end-to-end tracking and client login means deliveries can be booked and tracked and reports accessed directly. Route planning and optimisation is currently executed in isolation by individual fleet operators. There is a risk that if multiple fleet operators optimise their routing strategies in response to the same stimuli (e.g. diverting freight traffic onto a lower capacity road to avoid congestion), this could create new problems elsewhere. To counter this, more data sharing between major | | | | | | | | | | | | | | | Major Market
Failures | General | Tedify meaning deliveries are made as quickly and efficiently as possible. Barcode scanning enables consistency with other systems in the supply chain. Digital proof of delivery capture provides end-to-end tracking and client login means deliveries can be booked and tracked and reports accessed directly. Route planning and optimisation is currently executed in isolation by individual fleet operators. There is a risk that if multiple fleet operators optimise their routing strategies in response to the same stimuli (e.g. diverting freight traffic onto a lower capacity road to avoid congestion), this could create new problems elsewhere. To counter this more data sharing between major | | | | | | | | | | | | | | | Opportunities | Vehicle emissions savi | ings due to ro | ute optimisatio | n, reduc | ing the amount | of stem mileage and empty | running. Better o | co-ordinatio | n of asset | s resulting in red | uced waiting ti | imes and delivery v | vindows | | | | Barriers | No co-ordination betw | ween operato | rs, only done in i | isolation | ı | | | | | | | | | | | | Local Relevancy | and application of tele | ematics can b
nd Dublin, as v | e a short-term v
well as a lack of | win for h
network | elping the road :
resilience provi | and in cab technologies as t
sector, particularly HGVs, de
ded by on ground infrastruc
ed by industry]. | carbonise in the e | event of a sli | ower tran | sition to alternati | ve fuels. Conge | stion on the netwo | ork and re | outing | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | | Environment | | | | Se | ociety | | | | | | | | times, optimised use of
hain connectivity to sav | _ | | Max | | pact of the sector through a
n in other forms of pollution | | | Max In | fety
prove the safety
volving goods vel | | reduce the numb | er of acci | dents Min | | | | tion
I opportunities to addre
ent, land availability, in | | | Min | Greenhouse g
Reduction in g
net-zero by 206 | reenhouse gas emissions fro | om the sector to a | achieve | Max Re | ommunity distur
educe the impact
sality and informa | of freight on c | ommunities, noise
ry parking | levels, air | Max | | | | ivity seamless intermod
national freight movem | | | Med | | intrusive impact of freight
cal, protected settings | transport on visua | al | Med Ba | | | use planning, deve
better freight data | | Max | | | DYNAMIC I
MANAG | | Mode
Relevance | = | | Freight
Sector | Last Mile Logistics &
B2B Couriers | 4Rs | Re-time | , Re-route | Technical
Maturity | Piloting | Commercial
Maturity: | Not operat
commerci | | | |--------------------------|--|---|---|---|---|--|---|---------------------------|-------------------------|---|-----------------------------------|--|-------------------------------------|----------|--| | Definition:
[Trend] | bays and for the u | se of kerbspac | e to be change | d througho | ut the day to be | connected digital system. Thi
etter suit local demand. It also
adside is clear ahead of esser | enables dynami | ic pricing s | | to Geogr | egory
aphical
ability: | Data and C | Connectivity | | | | Best Practice | | | | | | U | se Cases | | | | | | | | | | | Grid Smarter Cit
Kerb
[Dublin, Westmin | centre-
Loading | —with the aml
g Bay (VLB) on | previously r | amically mana | lin City Council to better und
ge the kerbside with the use
space in the city or to extend | of Virtual Loading | Bays (VLE | 3s). Kerb i | s an app that give | s commercial v | vehicles the ability to b | oook a Virtual | | | | | Ford
GoPark
[London, Islingto | on-stre | et parking, a p | arking guid: | nce
app for dri | n city and local government p
vers, and using live vehicle d
n: Can you park here? If so, fo | ata to identify em | pty parkin | g spaces | nearby. the app (s | | | | | | | | Arup
FlexKerbs
[Simulation] | Cheaps
which v | side—the histo
was then teste | ric high stre
d using mic | et in the City of
osimulation m | odelling. This assessment de | ur schedule was | devised of | FlexKerb | space allocation, i | nformed by de | mand data but driver | by local policy | y, | | | Major Market
Failures | | which was then tested using microsimulation modelling. This assessment demonstrated that FlexKerbs would serve as a highly effective tool for improving both the operational efficiency | | | | | | | | | | | | | | | Opportunities | | | - | | | nable space to be used more
ity that loading bays will be a | | | | | | | | _ | | | Barriers | Digitisation of ker | bside could be | costly, enforce | ment for no | n-digital users | without using physical meas | ures, possible poli | icy and TR | O implica | tions. Needs to in | olve lots of silo | organisations, shifted | revenue strea | ım | | | Local Relevancy | centre (through p
delivery movemer | edestrianisatio
nts on the local
service centres | n). There is an
I environment
s and smaller u | opportunity
and ultimat
rban centre | to take a proace
by the final des
across the GD | tes so could look to reflect on
tive approach towards devel
ign of new sites (i.e. not build
A would be recommended v | opments across ti
ling plentiful deliv | he Quays a
very and se | ind Dockl
rvicing sp | ands to introduce
aces but making | smart systems
best use of sele | s as I way to mitigate t
ected areas). A single (| the impact of fu
platform that c | ut
ar | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | | Environmen | t | | | s | ociety | | | | | | | | times, optimised us
chain connectivity to | | | nd Max | | npact of the sector through a
on in other forms of pollution | | | Min Ir | afety
nprove the safety
nvolving goods ve | | o reduce the number | of accidents | N | | | | tion
d opportunities to ac
nent, land availability | | | rt Med | Greenhouse of
Reduction in g
net-zero by 20 | greenhouse gas emissions fro | om the sector to a | achieve | Min R | ommunity distur
leduce the impactuality and inform | t of freight on o | communities, noise lev
ry parking | vels, air | 1 | | | | tivity seamless inter
national freight mov | | | al, Max | | e intrusive impact of freight to | transport on visua | al | <u>Max</u> | | _ | use planning, develop
better freight data | oment, | N | | | AUTONON
VEHICL | | | 0'0' '0'0 | Freight Sector | Haulage &
Cordoned
Sites | 4Rs | Re-mi | ode | Technical
Maturity | Piloting | Commercial
Maturity: | | mmercial
ng / piloting | | | |--------------------------|---|---|--------------------------|---|---|--------------------------------------|-----------------------------|------------|-----------------------|----------------|---|-------------|---------------------------|--|--| | Definition:
[Trend] | Furthermore, 95% of acusers. CAVs are conside | livery is the costs of drivers'
cidents are attributed to h
ered by many to be key to t | uman erro
he future (| r, so with increasing auto
of parcel delivery, due in p | omation it is hoped
part to the cost sav | that road safety
ings that can be | will improve
achieved by | for all | Cate | | Au | tomation | a | | | | [Hend] | | pay a driver's salary. There a
dential areas for last mile de | | | | | | small | | ability: | | | | | | | Best Practice | | | | | Us | e Cases | | | | | | | | | | | | ARRIVAL
ROBOPILOT
[Bristol, UK] | | security), | the objective is to deliver | parcels on a fully a | autonomous 10-r | mile journey i | in all kin | ds of weather, and | on various ty | pes of roads. The pr | oject seeks | | | | | | Nuro
Nuro R2
[USA] | understand what real-world use cases could adopt highly automated commercial vehicles, helping to overcome existing problems, issues or challenges in the transport system. Nuro Nuro have designed a vehicle specifically to move goods between and among businesses, neighbourhoods, and homes. The fully autonomous vehicle is unmanned and about half the width of a passenger car. It's built with ultra-light materials and designed for neighbourhoods. These combined design elements will make it one of the safest vehicles on the road. Furthermore, this vehicle is the first company to receive a driverless exemption from the federal government in the USA. The trial service is part of the GATEway (Greenwich Automated Transport Environment) program and will operate in the Woolwich area of Greenwich. Once customers place an order at Ocado, the CargoPod collects it and sets out on a number of set routes around the neighbourhood. Each order has its own GPS coordinates, and once the van has reached its programmed destination, customers can collect their order from one of the eight compartments. The van can hold up to 128kg (282 pounds) of groceries at a time. Uber decided in 2020 to sell off its driverless car division to technology start-up Aurora. The move came as part of a drive to push for profitability. The company has maintained a 26% stake in the self-driving subsidiary and continues to maintain an interest, but the programme hit seer setbacks when one of Uber's driverless vehicles hit a woman in Tempe, Arizona in 2018. | | | | | | | | | | | | | | | | Oxbotica
CargoPod
[Greenwich UK] | Nuro R2 [USA] of a passenger car. It's built with ultra-light materials and designed for neighbourhoods. These combined design elements will make it one of the safest vehicles on the road. Furthermore, this vehicle is the first company to receive a driverless exemption from the federal government in the USA. Oxbotica CargoPod The trial service is part of the GATEway (Greenwich Automated Transport Environment) program and will operate in the Woolwich area of Greenwich. Once customers place an order at Ocado, the CargoPod collects it and sets out on a number of set routes around the neighbourhood. Each order has its own GPS coordinates, and once the van has reached its programmed destination, customers can collect their order from one of the eight compartments. The van can hold up to 128kg (282 pounds) of groceries at a time. Uber decided in 2020 to sell off its driverless car division to technology start-up Aurora. The move came as part of a drive to push for profitability. The company has maintained a 26% stake in | | | | | | | | | | | | | | | Major Market
Failures | | CargoPod [Greenwich UK] Ocado, the CargoPod collects it and sets out on a number of set routes around the neighbourhood. Each order has its own GPS coordinates, and once the van has reached its programmed destination, customers can collect their order from one of the eight compartments. The van can hold up to 128kg (282 pounds) of groceries at a time. Uber decided in 2020 to sell off its driverless car division to technology start-up Aurora. The move came as part of a drive to push for profitability. The company has maintained a 26% stake in the self-driving subsidiary and continues to maintain an interest, but the programme hit seer setbacks when one of Uber's driverless vehicles hit a woman in Tempe, Arizona in 2018. | | | | | | | | | | | | | | | Opportunities | | t of delivery thanks to the re
nomy also allows vehicle pla | | | ould operate conti | nuously without | the need for | driver b | reaks. Likely safet | y benefits due | e to automated syst | ems not g | etting tired | | | | Barriers | | ong as the vehicle adheres
I still requires a human in th | | Road Traffic Act – still re | equires human ove | rsight. New regu | ulations allow | fhands (| off, eyes on up to 8 | i0kmph, perh | aps enabling urban | applicatio | ns but this | | | | Local Relevancy | Although autonomous
movements of goods a
generation as the test | vehicles have not be trailed
and equipment within a cor-
bed for autonomous vehicle
longer distance driving. | d
commer
doned env | ironment. However, the | best-case example | would seek to u | use radial road | d infrasti | ructure and the pr | rominence of | longer distance inte | r regional | trip | | | | | | | | Impac | t on Freight | Objectives | | | | | | | | | | | Economy | | | | Environment | | | | s | ociety | | | | | | | | | times, optimised use of t | | Max | Reduce the impact of the | | | | /led In | nprove the safety | | o reduce the numb | er of accid | ents Ma | | | | | opportunities to addres | Impact on Freight Objectives Environment Society Air quality Reduce the impact of the sector through air quality improvements and a reduction in other forms of pollution and intrusive activities Creenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve and availability, infrastructure provision Max Creenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve net-zero by 2050 Min quality and informal overnight lorry parking | | | | | | | | | | | | | | | | ivity seamless intermoda
national freight moveme | al activity to support local,
ents across the area | Med | Urban realm
Minimising the intrusive
amenity and local, protec | | ransport on visu | al N | Иах В | | _ | use planning, deve
better freight data | opment, | Mii | | | | PLATOON | NING M | ode Relevance: | 10101 1010 - | Freight
Sector | Haulage | 4Rs | Re-n | node | Technical
Maturity | Piloting | Commercial
Maturity: | Comme
testing / pi | | | | |--------------------------|--|--|------------------------------|--|---|---|-------------|-----------|--|----------------|---|-----------------------|-----|--|--| | | | highly advanced V2V and | | | | | | | ce Cate | gory | Autor | mation | | | | | Definition:
[Trend] | While platooning,
increasing road sa | iving information from the
when the lead vehicle brak
iety. This enables the gap b
d an equivalent reduction i | s, the follow
etween truc | ing vehicles autor
combinations to | natically brake with no r | noticeable reaction tin | ne signific | antly | Geogra
Applica | | Ī | Ť | | | | | Best Practice | | | | | | Use Cases | | | | | | | | | | | | TRL
DAF Vehicle
Platooning
[UK] | congestion, CO2 effic | iency and fo | iel economy and o | K road trial of autonomo
defines the aspects that
ald operate for heavy veh | require further inform | nation. The | eir indep | endent assessmer | t provided th | | | | | | | | TNO
ENSEMBLE
[Europe] | [SEMBLE] failsafes that manage the interactions between vehicles in the platoon and other road users. Practical tests on closed testing grounds and in real life serve to an experience of 'learning by doing', to assess the impact on traffic and infrastructure and to promote multi-brand platooning. Furthermore, the project will design an interface to cloud-based services so that the platooning concept can be seamlessly integrated into the logistic value chain. Pelaton attoonPro fornia, USA] The Peloton System has proven savings of more than 7% when platooning using industry standard tests: 4.5% for the lead truck, and 10% for the following truck. Platooning only occurs when it's safe, where it's safe, and how it's safe. Peloton's cloud-based Network Operations Cloud (NOC) approves each platoon. It adjusts platooning parameters to be safe for conditions. Each driver is empowered with over-the-horizon alerts at all times. The NOC maximizes platooning opportunities by notifying drivers of potential pairings based on their location and anticipated route. The NOC can find platooning partners for drivers on route or platooning can be planned ahead of time. | | | | | | | | | | | | | | | | Pelaton
PlatoonPro
[California, USA | Pelaton PlatoonPro alifornia, USA] The Peloton System has proven savings of more than 7% when platooning using industry standard tests: 4.5% for the lead truck, and 10% for the following truck. Platooning only occurs when it's safe, where it's safe, and how it's safe. Peloton's cloud-based Network Operations Cloud (NOC) approves each platoon. It adjusts platooning parameters to be safe for conditions. Each driver is empowered with over-the-horizon alerts at all times. The NOC maximizes platooning opportunities by notifying drivers of potential pairings based on their location and anticipated route. The NOC can find platooning partners for drivers on route or platooning can be planned ahead of time. Mercedes-Benz Trucks has concluded that there is no business case for truck platooning, saying that the technology failed to deliver appreciable fuel savings in its on-the-road tests. Although the manufacturer will remain committed to ongoing platooning projects with partners, such as Ensemble in Europe, it now plans to refocus its resources on developing | | | | | | | | | | | | | | | Major Market
Failures | Mercedes-Ben | [California, USA] Each driver is empowered with over-the-horizon alerts at all times. The NOC maximizes platoning opportunities by notifying drivers of potential pairings based on their location and anticipated route. The NOC can find platoning partners for drivers on route or platoning can be planned ahead of time. Mercedes-Benz Trucks has concluded that there is no business case for truck platoning, saying that the technology failed to deliver appreciable fuel savings in its on-the-road tests. | | | | | | | | | | | | | | | Opportunities | Ties in with increas | ing levels of vehicle autom | ation and is | particularly suited | to inter regional and na | tional movements of | freight alo | ng key d | orridors | | | | | | | | Barriers | | atively frequent motorway
tion would require a critical | | | | | | | | of the lead an | d following vehicles w | hen platoonin | g. | | | | Local Relevancy | to Dublin (M1). Plat
also offset the den | interregional trips radiating
ooning, as with automation
and for a quick investment
el efficiency. There may eve | more gene
in lorry parl | rally, can help over
ss. Platooning wou | rcome some of the chall
uld also dovetail any plan | enges of recruiting ar
ns for a priority freight | nd retainin | ng HGV d | rivers in Ireland w | hilst the oppo | rtunity for a driver to r | rest mid route | can | | | | | | | | | Impact on Freigh | | | | | | | | | | | | Economy | | | | Environment | | | | 5 | ociety | | | | | | | | | times, optimised us | e of fleets, delay mitigation
save time and costs | and Max | | act of the sector throug
in other forms of polluti | | | Max | afety
mprove the safety
nvolving goods ve | | to reduce the number | r of accidents | Min | | | | | l opportunities to ac | dress skills shortages, supp
, infrastructure provision | ort Med | Greenhouse gas
Reduction in gre
net-zero by 2050 | eenhouse gas emissions | from the sector to ac | :hieve | Max | community distur
deduce the impact
quality and informa | of freight on | communities, noise le
rry parking | wels, air | Min | | | | | _ | nodal activity to support loc
ements across the area | al, Med | | intrusive impact of freightal, protected settings | ht transport on visual | | Min E | | _ | l use planning, develo
, better freight data | pment, | Min | | | | LOAD | Mode
Relevance | ************************************** | 6 6 | Freight
Sector | Haulage &
Freight
Forwarding | 4Rs | Re-duo | <u> </u> | echnical
laturity | Mature
Technical
Operation | Comm
Matu | | Opera
Comme | | | |-----------------------------|--|--|---------------------------|--|---
--|-------------------------------|---------------|--------------------------|--|---------------|--------------|----------------|--------|--| | Definition:
[Trajectory] | been shipped through t
wait until they have acc | parcels to journeys by maki
traditional more expensive
umulated enough product
d to take a parcel to its dest | means. Lo
to fill an e | ed sharing means that
ntire deck. Very often, i | businesses can mo
there is always some | ve freight sooner, ra
eone nearby about | ather than ha
to undertake | ving to | Geogra | gory
aphical
ability: | | Aggreg | ation | | | | Best Practice | | | | | Us | e Cases | | | | | | | | | | | | Innovate UK
FreightShareLab
[UK] | FreightShareLab is aiming
In a similar way to what it
shippers, fleets and carrie | appears (| | | · · | | | | | | | - | | | | | Penske Logistics
Clear Chain
[USA] | driver hours and work allow backhaul loading opportunities to constantly be updated and matches to be facilitated when appropriate. Finding the right backhaul opportunity requires intense coordination, because the timing must match at every step of the delivery process. Carriers need to find backhauls that fit within their schedule and also products that work within their trailers. LoadShare is a unique service connection parcels to incurred so record to deliveries. If you have a parcel to deliver there is always someone about to undertake a journey who is prepared to | | | | | | | | | | | | | | | | LoadShare
[UK] | LoadShare [UK] Load Tech is a market leader for providing IT services for the haulage and logistics sectors in the UK. The company trialled a marketplace hub for matching requirements for haulage work | | | | | | | | | | | | | | | Major Market
Failures | Road Tech
[UK] | [UK] take that parcel to its destination by incorporating your parcel delivery in their routine or occasional trip. Likewise, if you have a journey to undertake, there is always a parcel close to your route that, for some small deviations of journey, you can take with on route and supplement your journey costs. Road Tech is a market leader for providing IT services for the haulage and logistics sectors in the UK. The company trialled a market place hub for matching requirements for haulage work with spare capacity with the Road Haulage Association for several years. In the end they concluded it did not work as what was always left were either jobs that no one wanted or ones that | | | | | | | | | | | | | | | Opportunities | Making use of spare cap | pacity on other modes such | as rail, bu | s, DDRT or car. | | | | | _ | | | | | | | | Barriers | Most effective in geogra | aphies where transport is ov | ver longer | distances than is comr | non in the UK. Also | concerns by operat | ors around da | ata sharing : | and the va | lue for money | for taking up | shipmen | t opportunit | ties | | | ocal Relevancy | particular issue within b | atform that can be quickly a
noth an urban context (LGV)
ustomer bases to develop a | s) and for I | nauliers having unload | ed at ports across th | ne GDA. Load sharin | ng does offer S | SMEs workir | ng within t | | | | pty running | ı is a | | | | | | | lmpa | ct on Freight | Objectives | | | | | | | | | | | conomy | | | ı | invironment | | | | Society | 1 | | | | | | | | | | eets, delay mitigation and
time and costs | Max | uir quality
Reduce the impact of the
nd a reduction in othe | | | | | the safety
g goods ve | of the sector t
hicles | to reduce the | e number o | of accidents | s M | | | | | s skills shortages, support
astructure provision | Min | reenhouse gas emiss
reduction in greenhou
ret-zero by 2050 | | ım the sector to ach | nieve Max | x Reduce | | rbance
t of freight on
al overnight lo | | s, noise lev | els, air | M | | | | ivity seamless intermoda
national freight movemer | l activity to support local,
nts across the area | Med | Irban realm
finimising the intrusiv
menity and local, prot | | ransport on visual | Min | | ntegrate fr | eight into land
ervicing plans | _ | | ment, | Ν | | | WASTE MAN
PARTNE | | Investment
Needed | LOW | V | Sector Waste Management | Actors | Public/P | rivate | Risk
Level | Low | 4Rs | Re-duce | | | |---------------------|--|---|---|--|--|---|---|---|---|---|---|---|--------------|--| | Definition: | - | | | | nd other business led groups developing a
s to offer a reliable, efficient service that wo | | | | Cate | gory | Eco Lo | ogistics | | | | [Trajectory] | reduce vehicle mover
collections into fewer | _ | | | ongestion and improve air quality. The basic
ate the industry. | c premise is to cons | solidate wast | te | Geogra
Applica | | | | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | Suez & Bath BID Trade Waste Partnership [Bath] Bristol Waste & Broadmead BID Zero Emission Collections | BID area. The put
in the city each d
practices and rec
Broadmead BID's
company, but als
like to encourage | rpose of st
day and im
duce the v
's partners
so a part o
e business | treamlir
oprove t
weight o
ship wit
of the Br
ses to re | n partnership with SUEZ (formerly SITA) for
ning the city's trade waste collection and re
the appearance of the public realm in our V
of commercial waste. Companies save over
h Bristol Waste enables all levy-payers to ta
ristol community, bringing together busine
ecycle crisp packets to reduce general waste
omy) | ecycling service is to
Vorld Heritage Site.
20% on costs of col
ike advantage of di
sses across Bristol I | o reduce con
. Rates are 2
llections and
scounted, ar
by reducing | gestion ar
5% less for
Suez opti
nd very cor
and re-usi | nd city pollution
levy payers, wi
mises vehicle lo
mpetitive, price
ng waste. There | by reducing
th on site sup
ads during o
s. Bristol Was
e is plenty of i | the number of waste
sport from Suez to fost
ollections.
ste is proud not to be ju
B2B movement too as | collection operat
er better recyclin
ust a waste collect
Bristol Waste w | ng
ection | | | | Better Bankside BID
Subsidised Recycling
Service | Collections back a small rebate (circular economy) etter Bankside BID bisidised Recycling All Better Bankside businesses are eligible to sign up for subsidised recycling service with Paper Round offering an allocation of sacks (and 15% discount on food waste sacks) and a subsidised range of other collection requirements (dry recycling). Paper Round will work with the business to arrange collections times and dates that work for the business. They can also come into the business and carry out a waste audit to identify areas were recycling rates can be improved and additional savings made and work with other partners to collect and recycle | | | | | | | | | | | | | | Opportunities | Fostering better recyc | cling activity and red | lucing bus | siness ov | verheads through behaviour change techn | iques. Reduces HG' | V movemen | ts and allo | ws for routing o | ptimisation (| to save provider costs/: | secure demand | | | | Barriers | Challenge of operatin | g within an unregula | ated mark | et wher | re other commercial providers are still pres | ent. Needs buy in a | t volume to | work effec | tively. | | | | | | | Local Relevancy | shadowing) and supp
areas. This initiative w | ort alternative mode
ould help bring toge | es for trans
ether a foc | sport for
us on w | s and local stakeholders to proactively coor
r the collection and serving of properties w
vider recycling and environmentally friendly
g goods and items between levy payers/me | ithin Dublin City Ce
practices and cata | entre. This co
alyse a discus | ould act as | a pilot proof of | concept to n | oll out to other service | centres and urb | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | |
Environment | | | Soci | iety | | | | | | | | times, optimised use of
thain connectivity to say | | ion and | Max | Air quality Reduce the impact of the sector through and a reduction in other forms of pollution | | | | _ | | to reduce the number | of accidents | Med | | | | tion
d opportunities to addre
nent, land availability, in | | | Max | Greenhouse gas emissions
Reduction in greenhouse gas emissions fr
net-zero by 2050 | om the sector to a | chieve M | fed Redi | munity distur
uce the impact
ity and informa | of freight on | communities, noise le
ony parking | wels, air | Max | | | - | civity seamless intermod
national freight movem | | | Min | Urban realm Minimising the intrusive impact of freight amenity and local, protected settings | transport on visual | ı M | lax Bett | _ | _ | d use planning, develop
i, better freight data | pment, | Max | | | EMISSION | /UNES | vestment
Needed | Medium | | Sector | Road Transport | Actors | Pu | ublic | Risk
Level | High | 4Rs | Re-mode,
duce, Re-m | | | |----------------------------|--|---|--|-------------------------------|--|--|---|----------------------------------|-----------------------|--|-----------------------------------|---------------------|------------------------|--------|--| | Definition: | from entering the z | one. No vehicle | is banned in the | zone, b | out those which | quality, in particular by disco
n do not have clean enough o | engines will have t | o pay a dai | ily charg | ge if | gory | Re | egulatory | | | | The Princeton area and the | - | | | | | measures to offset the impac
nal government department | | on air qual | lity that | ocogi | aphical
ability: | | | | | | Best Practice | | | | | | U | se Cases | | | | | | | | | | | Ultra-Low Emissic
Zone (ULEZ)
London | October:
and redu | 2021 when it expa
cing the amount | ands to
of pollu | cover a broade
ution from traf | 4 hours a day, 7 days a week,
er area. Despite recent impro-
fic remains one of the best w
arged upon entry to the zone | vements in air qua
ays of improving a | ality, toxic a
air quality. T | ir pollut | ion in remains the | oiggest environ | mental risk to the | health of all Londo | loners | | | | Air Quality Speed Li
Trials
UK | reduction | n in NO ₂ when tra | iffic spe | | f the Strategic Road Network
from 70 to 60mph at six locat | | | | | | | | | | | | Green Travel Distri
Birmingham | UK mean limit level of 40 μg/m³. Pre-requisite to the Clean Air Zone, The Green Travel Districts sought to focus investment on public transport, walking and cycling to try to encourage people to use cars less, with the city's road infrastructure stretched. The vision is for districts with less congestion, less pollution and fewer accidents to contribute towards Birmingham's carbon and air quality targets. GTDs build on the experiences of Birmingham's Smarter Choices programme by integrating travel awareness on a local level within a wider policy and infrastructure framework and where there were higher concentrations of commercial activity. | | | | | | | | | | | | | | | Opportunities | The core objectives | | | | | | | | | | | | | | | | Barriers | Needs government | and political b | acking. Will be le | ss effec | tive if undertak | en voluntarily or if the appro | ach does not sugg | gest chargi | ng mod | lels are applied. Will | have dispropo | rtionate impact on | HGVs | | | | Local Relevancy | motorbikes inhabiti
also the issue of HG
An emission zone, t | ing the roads, c
Vs giving off th
argeted at redu | ausing the levels
eir own pollutan
ucing GHG emiss | of PM2
ts, with
ions an | .5 and other po
many of them
d nudging beh | running on diesel which can
aviour change through re-m | certain periods of
release further po
oding and reducir | the day, pa
ollutants re | articular
lated to | ly during rush hour
the combustion of | or in any area t
fossil fuels. | hat sees a high vol | ume of traffic. The | | | | | | | | | | Impact on Freight | t Objectives | | | | | | | | | | Economy | | | | | Environme | nt | | | | Society | | | | | | | | - | _ | - | Med | | - | | | Max | - | | o reduce the numb | er of accidents | Med | | | | opportunities to add | optimised use of fleets, delay mitigation and optimised use of fleets, delay mitigation and optimised use of fleets, delay mitigation and a reduction in other forms of pollution and intrusive activities Max | | | | | | | | | | | | | | | _ | - | Air quality Reduce the impact of the sector through air quality improvements and a reduction in other forms of pollution and intrusive activities Creenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve Max Safety Improve the safety of the sector to reduce the number of accidents involving goods vehicles Community disturbance Reduce the impact of freight on communities, noise levels, air Max Neduce the impact of freight on communities, noise levels, air | | | | | | | | | | | | | | | | nagement
outing | Investment
Needed | Low | Sector | Road (Haulage &
Freight Forwarding) | Actors | Public | Risk
Level | Medium | 4Rs | Re-route, Re-tim | | | | | |------------------------|---|--|--|--|--|---|--|---|------------------------------------|--|----------------------|--|--|--|--| | Definition:
[Trend] | (drivers included) when
and raising visibility of the | travelling through, t
hem in, around and i
ublin has had <u>a</u> HGV | o and from, an
oetween key ti
Management | nd within the GD
rip generators to
Strategy in place | s by working with departmen
A. There are notorious challer
minimise externalities, partic
e since 2007 with a cordon be
f a permit scheme. | nges with enforc
cularly air polluti | ing certain restri
on and road safe | ctions
ty Geo | tegory
graphical
licability: | Re | gulatory | | | | | | Best Practice | | | | | Us | e Cases | | | | | | | | | | | | Truck Route System
Vancouver | which skirted the o | ity centre and | passed key trip | nich sought to sift the movem
generators. These were opera
between 7am and 6pm, seve | ation on a 24-hou | ur basis with veh | icles only able to de | viate to make loca | al deliveries. In the | | | | | | | | Lorry Maps (& Signage)
Worcestershire | facilities for lorry dr | ivers. Major tri | p attractors, pea | mpact of road freight movem
k time congestion, inclines, w
ignage was deployed to assis | vidth and heigh | restrictions, layby | s etc were also inc | orporated to aid w | ith routing behavi | | | | | | | | Freight Gateway Oxford County Council [UK] | significant advantage of using the Gateway system is dynamic routing function which can be updated to reflect planned incidents on the highway network such as road closures or temporary highway restrictions. To further support this system a driver app is being developed which aims to rival the driver's use of satellite navigation system whist the system also ties into a 'Lorry Watch' portal and the councils VMS system, Route (& Watch) A software platform that can aid both public authorities, drivers and fleet managers with HGV routing and to digitise a range of restrictions, regulations and road information to support | | | | | | | | | | | | | | | | Lorry Route (& Watch)
Pro Mapping | [UK] into a 'Lorry Watch' portal and the councils VMS system, orry Route (& Watch) A software platform that can aid both public authorities, drivers and fleet managers with HGV routing and to digitise a range of restrictions, regulations and road information to support | | | | | | | | | | | | | | | Opportunities | Offers an opportunity to | collate data (softwa | re options) wh | ilst improving le | gibility of access
restrictions | and suitable rou | ting options. Pop | ular initiative that (| an be supported | by industry. | | | | | | | Barriers | Enforcement will remain | n an issue until powe | rs to ensure a | nd legislate the | use of ANPR technology can : | subsequently be | used to issue Pe | nalty Charge Notic | es for noncomplia | nce of restrictions | | | | | | | Local; Relevancy | greater number of vehic | cles (four axles as we
if the system is due to | ll as five axles)
o a deliberate l | need to account | / Management Strategy alrea
: for the current challenges ar
ce or poor wayfinding and sig | round enforceme | ent and visibility | of the restrictions o | n road and in pre- | -planning. Further | research is required | | | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | | Economy | | | | Environment | t | | | Society | | | | | | | | | | times, optimised use of flo
hain connectivity to save | | and Max | | pact of the sector through ai
n in other forms of pollution : | | | Safety
Improve the safe
involving goods | - | reduce the numb | er of accidents Ma | | | | | | | tion
I opportunities to address
ent, land availability, infra | | port Min | Greenhouse g
Reduction in g
net-zero by 20 | reenhouse gas emissions fro | m the sector to a | achieve Max | | | ommunities, noise
y parking | levels, air Ma | | | | | | | ivity seamless intermodal
national freight movemer | | ocal, Max | | e intrusive impact of freight tr
ocal, protected settings | ransport on visua | al Max | | | ise planning, devel
setter freight data | | | | | | | QUIET | ELIVERIES | e determing deliveries allow goods to be delivered to businesses outside normal hours, using techniques to minimise note and disturbance and congestion and the impact of carbon emissions in peak hours, (within or outside the shoulders of the day). There can be many techniques would be reduced the impact of carbon emissions in peak hours, (within or outside the shoulders of the day). There can be many techniques would not reduce visual and notes intrusions ranging from the type of vehicle used to the equipments outside the shoulders of the day). There can be many techniques would not reduce visual and notes intrusions ranging from the type of vehicle used to the equipments outside the shoulders of the day). There can be many techniques would not the control of the day | | | | | | | | | | | | | |------------------------|--|---|--------------------------|--|---|------------------------------------|---------------------------------------|--------------------------|---|---------------------------------|--|---|------|--| | Definition:
[Trend] | the externalities genera
congestion and the imp
involved to reduce visua | ated from freight movem
pact of carbon emissions
al and noise intrusion; rai | ents. The i | aim of shifting de
ours (within or ou | liveries to other times is
tside the shoulders of th | to improve del
ne day). There c | ivery schedules a
an be many tech | and redu
Iniques | Geogr | aphical | Eco | Logistics | | | | Best Practice | | | | | | Use Cases | 5 | | | | | | | | | | Deliveries
CIVITAS | night-time deliveries c
terms of reduced deliv | ould be m
ery times | ade using adapte | ed trucks and quiet unlo | ading methods | The pilot (which | h was sub | sequently rolled o | out across the i | rest of the city) demo | onstrated benefits in | | | | | | major national retailers and several local authorities, to advocate, promote and educate business and government around the benefits of retiming within London. The Co-op was one of the organisations who engaged with the consortium to help re-time deliveries across 100 of their London based stores. A subsequent guide of Quiet Deliveries was also produced for the capital to aid with re-timing deliveries based on industry best practice. The ZEUS project aims to show that urban goods can be delivered in off-peak hours in a quiet, efficient, and environmentally friendly way. Using off-peak hours of 7pm-7am means delivery trucks will not contribute to rush hour and traffic jams. To keep these late-night deliveries quiet the project is looking at quiet transport trailers, low-noise pallet trucks, and covered loading | | | | | | | | | | | | | | | European Institute of
Innovation and | Project ZEUS Project ZEUS The ZEUS project aims to show that urban goods can be delivered in off-peak hours in a quiet, efficient, and environmentally friendly way. Using off-peak hours of 7pm-7am means delivery trucks will not contribute to rush hour and traffic jams. To keep these late-night deliveries quiet the project is looking at quiet transport trailers, low-noise pallet trucks, and covered loading docks at the stores. Colruyt Group is using their stores in city centres as real test sites and hoping that the ZEUS project not only helps their own delivery system but can be used as a blueprint for cities across Europe. | | | | | | | | | | | | | | Opportunities | Reduces the externalities | es from delivery and colle | ction acti | vities on local cor | mmunities whilst recogn | nising the need | for freight move | ments to | take place and op | timised for th | e industry to suppor | t society | | | | Barriers | The application may var | ry depending on the org | nisation a | and influence ove | r supply chain decisions | (especially if ve | ehicles are trip ch | naining b | etween multiple s | ites during a d | ay) | | | | | Local Relevancy | from place to place). Tra
of busy windows to min | affic mixing between frei
nimise delay (and ultimat | tht and of
ely supply | her forms of road
chain efficiency) | l transport, creates cong
. Large supermarket cha | estion and con
ains and wholes | centrates air pol
alers, both with | lution; wi
larger ful | th quiet deliveries
filment centres in | aiming to ide
peri urban loc | ntify and recalibrate
ations, should be the | freight activity outs
target audience fo | side | | | | | | | | Impact on Freig | ht Objecti | ves | | | | | | | | | Economy | | | | Environment | | | | : | Society | | | | | | | | | | d Max | Reduce the im | pact of the sector through
in other forms of pollu | | | Max | - | | to reduce the numb | er of accidents M | Иах | | | | tion
I opportunities to address
ient, land availability, infra | | Min | Greenhouse ga
Reduction in g
net-zero by 208 | reenhouse gas emission | s from the sect | or to achieve | Med | Community distu
Reduce the impac
quality and inform | t of freight on | communities, noise
rry parking | evels, air M | Иах | | | | ivity seamless intermoda
national freight movemer | | Min | | intrusive impact of freig
cal, protected settings | ght transport or | n visual | Max | _ | | use planning, devel
, better freight data | opment, M | Иах | | | | | Needed Low Sector Planning Policy Actors Public Level Low 4Rs Mode, Re-route value for London (Tit.) have developers and interest of DSP guidance from the help showcase and illustrate the stages that local authorities and developers (or guidance to springer). The Planning process and mitigate the externalities from freight movements are considered at the forefront of developing new residential or commercial divellings; with the airns of ultimately discharging a planning condition for a site. The save are relight movements are considered at the forefront of developing new residential or commercial divellings; with the airns of ultimately discharging a planning condition for a site. The guidance is designed
to support the planning process and mitigate the externalities from freight movements on new and existing communities. The TRAILBLAZER project (Transport and Innovation Logistics by Local Authorities with a Zest for Efficiency and Realisation) has achieved a reduction in energy used in urban freight transport through public sector policy interventions across Europe by showcasing good practices and promoting DSPs. The key objectives of the project was to implement the actions container in the DSPs produced by PATHFINDER Cities/towns (Liverpool, Sutton, Croydon and Lambeth); evidence reduced energy use as a result of DSPs; transfer knowledge to less experienced organisations and promote best practice in freight energy efficiency amongst local and regional authorities and the private sector in Europe. Birmingham City Council created a toolkit to support the development and implementation of Delivery and Servicing Plans (DSPs) by businesses and organisations operating in Birmingham to support the roll out of Green Travel Districts (CITD) and business engagement across service centres located on arterial routes through the city. This was based on a desire to encourage behaviour change through an assessment of delivery and servicing activities as part of a one to one survey, interviews and observational analysis o | | | | | | | | | | | | | |-----------------|--|--|---------------------------------|----------------------------------|--|---|--|---|---------------------------------------|--|-------------------------|--|--|--| | | & SERVICING
LANS | | Low | Sector | Planning Policy | Actors | Public | | Low | 4Rs | | | | | | Definition: | typically a planning con | dition that is discharg | ged on the ba | sis that organisa | tions and developers are ma | aking attempts to re | educe the | | | Land U | Ise Planning | | | | | [Trend] | | _ | - | | - | | | | | | lacktriangle | | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | Delivery & Service
Plans Guidance
Transport for London | ensure freight mow | ements are co | insidered at the | forefront of developing new | residential or comr | mercial dwelling | s; with the aims of u | ltimately discha | | | | | | | | Pathfinder Towns
Trailblazer Project
UK Towns | transport through public sector policy interventions across Europe by showcasing good practices and promoting DSPs. The key objectives of the project was to implement the actions container in the DSPs produced by PATHFINDER cities/towns (Liverpool, Sutton, Croydon and Lambeth); evidence reduced energy use as a result of DSPs; transfer knowledge to less experienced organisations and promote best practice in freight energy efficiency amongst local and regional authorities and the private sector in Europe. Birmingham City Council created a toolkit to support the development and implementation of Delivery and Servicing Plans (DSPs) by businesses and organisations operating in Birmingham to support the roll out of Green Travel Districts (GTD) and business engagement across service centres located on arterial routes through the city. This was based on a desire to | | | | | | | | | | | | | | | Delivery & Servicing
Plan Toolkit
Birmingham City
Council | Delivery & Servicing Plan Toolkit Birmingham City Birmingham City Eirmingham City Eirmingham City Delivery and Servicing Plans (DSPs) by businesses and organisations operating in Birmingham to support the roll out of Green Travel Districts (GTD) and business engagement across service centres located on arterial routes through the city. This was based on a desire to encourage behaviour change through an assessment of delivery and servicing activities as part of a one to one survey, interviews and observational analysis of sites. | | | | | | | | | | | | | | Opportunities | Embedding best practic | ce into key decision-n | naking proces | ses and support | ing integrated land use and | transport planning | g. Mitigates exter | nalities from develo | pments and op | timises freight jour | neys | | | | | Barriers | Needs to be properly er | nforced and monitore | d to assess co | mpliance. A 'stic | k' needs to be applied to ha | ve an impact such a | as the need for a | plan to be develope | ed to discharge | a planning condition | on | | | | | Local Relevancy | would be highly valuabl
have equal applicability | le and ensure consiste
to pre-existing devel | ency in the de
opments so th | velopment of planatit can be use | ans that can be requested a
d to target freight generator | t pre-application ph
rs and rolled out acr | nase for sites of a
ross service cent | particular size or w
res where delivery a | ith notable freq
ind servicing iss | uent requirements
ues are prevalent a | . A toolkit should also | | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | Environment | : | | | Society | | | | | | | | | times, optimised use of fl | | and Max | Reduce the im | - | | | Improve the safety | | reduce the numb | er of accidents Max | | | | | | opportunities to address | | port Max | Reduction in g | hieve Max | Reduce the impac | t of freight on o | | levels, air Max | | | | | | | | ivity seamless intermoda
national freight movemer | | cal, Med | | intrusive impact of freight
cal, protected settings | transport on visual | Max | Placemaking
Better integrate fro
construction and s | _ | | opment, Max | | | | | | RUCTION
ICS PLANS | Investment
Needed | Low | Sector | Planning Policy | Actors | Public | Risk
Level | Low | 4Rs | Re-duce, Re-route,
Re-time | | | | |------------------------
--|---|----------------------------|---|---|--|--|---|---|---|--------------------------------------|--|--|--| | Definition:
[Trend] | are developed early in t
network. The construct | the planning process and
ion supply chain covers | d focus spe
all moveme | cifically on const
ents of goods, wa | tion vehicle activity into and
ruction supply chains and h
aste and servicing activity to | ow to reduce im
and from site. Th | pact on the road
ne plans are deve | loped Geo | ntegory
graphical | Land (| Jse Planning | | | | | [Helia] | | | | | ced by them internally. Ther
tructor Scheme, also worth c | | | ith Ann | licability: | | lacksquare | | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | H2020 Programme for
SUCCESS
CIVITAS EU | by exploring and testi
including using guida | ng reliable
nce materi | and innovative s
al and tools to as | Centres for construction (SUC
colutions. Different solutions
ssess data and use appropria
stres per vehicle (GHG emiss | were tested in fo
ate solutions (e.g. | ur pilot sites in the
e-collaboration t | ne partner countries
cools, GIS) to reduce | s, Valencia, Paris,
cost and transit | Verona and Luxem
time of constructio | bourg City which
n materials, the | | | | | | Construction &
Logistics Plans (CLP)
Transport for London | ogistics Plans (CLP) guidance document assists those looking to write either an effective outline CLP or a detailed CLP as well as explaining in further detail the difference between the two. Templates and tools have also been designed that can be completed by developers to save time and costs with developing the plans and helping to steer the content required. Fostering a collaborative model between the council, contractor and supply chain in order to maximise efficiencies and provide greater project certainty. The implementation of a macro level 'Framework CLP' considers collectively the construction activity taking place across Croydon Town Centre to generate more substantial benefits than could be achieved by considering | | | | | | | | | | | | | | | Construction Logistics Fostering a collaborative model between the council, contractor and supply chain in order to maximise efficiencies and provide greater project certainty. The implementation of a macro | | | | | | | | | | | | | | | Opportunities | Embedding best practi | ce into key decision-ma | king proces | ses and mitigati | ing externalities from new d | evelopments. Su | pply chain efficie | ncies and collabora | tion save time ar | d reduce costs. | | | | | | Barriers | Needs to be properly er | nforced and monitored t | o ensure d | eveloper and sup | oply chain compliance. Succ | ess is built on so | und cooperation | between different s | takeholders to b | e meaningful. | | | | | | Local Relevancy | requirement for a CLP i | into the conditions set fo
is a new site within a bu | or planning
rgeoning lo | permission. The
gistics site whic | t planning architecture to he
se can be outline or full CLP
h will inevitably look toward | s with clear guid: | ance/toolkit bein | g developed to com | plement the roll | out of the condition | n. CLPs are relevant in | | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | | Economy | | | | Environmen | t | | | Society | | | | | | | | | times, optimised use of fl | | nd Max | | npact of the sector through a
n in other forms of pollution | | | | - | o reduce the numb | er of accidents Max | | | | | | and a reduction in other forms of pollution and intrusive activities involving goods vehicles Tribution S and opportunities to address skills shortages, support estment, land availability, infrastructure provision The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities involving goods vehicles The provision and a reduction in other forms of pollution and intrusive activities | | | | | | | | | | levels, air Max | | | | | _ | ivity seamless intermoda
national freight movemer | | l, Med | | e intrusive impact of freight
ocal, protected settings | transport on visu | al Max | _ | _ | use planning, deve
better freight data | lopment, Max | | | | | BUILDING
REGULA | | estment
leeded | LOW | s | ector | Planning Policy | Actors | Pu | blic | Risk
Level | Low | 4Rs | Re-route, Re | e-duce | |------------------------|--|--|-----------------------------------|------------|----------------|--|----------------------|---------------|-------------|--|---------------------|--|---------------------|--------| | m di isi | | | | | | t new business premises pro
or storage zones, the numbe | | | | 9 Cate | gory | Land U | se Planning | | | Definition:
[Trend] | activities causing con | gestion and ok | ostruction due | to the hi | igh number of | f delivery trucks and the
relat
for this measure as they gen | ted heavy burden o | on public str | | _ | aphical
ability: | | • | | | Best Practice | | | | | | L. | Jse Cases | | | | | | | | | | Servicing Adaptation
Mercat de la
Conceptió
[Barcelona] | delivery are | eas or storage
of at least 400 | areas wir | thin newly bui | in 1998 was the start of the in
It business establishments a
least one delivery zone withi | nd stores, with the | e objective o | f reducin | g the number of a | n-street operat | ions. The ordinance | e states that all n | | | | BREEM Certification
BREEM | BREEM categories evaluate energy and water use, health and wellbeing, pollution, transport, materials, waste, ecology and management processes. This means BREEAM rated developments are more sustainable environments that enhance the well-being of the people who live and work in them, help protect natural resources and make for more attractive property investments. Shopping centres and large stores in central business districts have limited space and often have insufficient or out-dated loading docks. Logistics UK have developed a guide for delivering safe efficient, and sustainable logistics. Loading docks visiting drivers | | | | | | | | | | | | | | | Locking Dock Safely
Logistics UK | ocking Dock Safely Shopping centres and large stores in central business districts have limited space and often have insufficient or out-dated loading docks. Logistics UK have developed a guide for delivering safe efficient, and sustainable logistics. Loading docks research a number of significant ricks that require careful management. Differing specifications for docks and vehicles, visiting drivers | | | | | | | | | | | | | | Opportunities | To reduce enforceme | nt requiremen | nts, road user o | onflict ar | nd congestion | alongside user safety during | delivery, collection | n and servic | ing activi | ty; Would set bes | practice. | | | | | Barriers | Would require cross d | lepartment co | llaboration wit | hin local | authorities to | deliver working with develop | pers. Sites may also | o be physica | illy consti | rained or need ret | rofitting and ur | able to accommod | late servicing ya | irds. | | Local Relevancy | | the intensificat | tion of housing | and cor | mmercial activ | ns into the design and planni
vity across Dublin. There is lin | | | | | | | | | | | | | | | | Impact on Freigh | t Objectives | | | | | | | | | Economy | | | | | Environme | nt | | | s | ociety | | | | | | | times, optimised use of
hain connectivity to sav | | | Med | | impact of the sector through
tion in other forms of pollutio | | | Min Ir | afety
nprove the safety
nvolving goods ve | | reduce the numb | er of accidents | Max | | | tion
I opportunities to addre
ent, land availability, in | | | Min | | gas emissions
greenhouse gas emissions f
2050 | from the sector to | achieve | Min R | ommunity distur
educe the impact
uality and inform | of freight on c | ommunities, noise
y parking | evels, air | Max | | _ | ivity seamless intermod
national freight movem | | | Min | | n
the intrusive impact of freight
I local, protected settings | t transport on visu | ıal | Max B | _ | _ | ise planning, devel
better freight data | opment, | Max | | URBAN
CONSOLIDA | Mode | Relevance | All | Freight
Sector | Last Mile
Logistics | 4Rs | Re-mode, | , Re-route | Technical
Maturity | Initial real-
world
operation | Commercial
Maturity: | Commercial
Launch | | | |-----------------------------|---|---|--|--|---|---|--|--------------------------------------|--|--------------------------------------|--|--|--|--| | Definition:
[Trajectory] | load where upon arrive
at all scales, manifestir
an urban area usually: | al, the shipment is b
ng differently at vario
aggregating deliveri | roken into smalle
ous points in the l
ies in larger ware | n by combining multiple
r consignments for onw
ogistical chain. Remote
nousing units; with LGVs
ne last mile and is more i | ard delivery across
consolidation, as in
delivering consign | the locality. Con:
nplied, takes pla
ments across a l | solidation car
ace on the per
broad area. M | n happen
riphery of | Geogra
Applic | phical | Consol
配 | idation | | | | Best Practice | | | | | U | se Cases | | | | | | | | | | | Zedify
Zero emission hub
[Bristol] | hoped that withi
centre. Here, freig
This mode preve | n 10 years, 95% of
ght is processed a
nts vans an HGVs | o set up a zero emission
deliveries can be made
and then remoded on to
from having to access t
ional urban network, wit | by electric vehicles.
electric cargo bike,
he congested centr | The zero-emissi
, or other sustain
e of Bristol, and | ion hub is loc
nable last mile
therefore cre | ated on the
mode of
ates savin | e edge of Bristo
delivery, to mak | l where it inter
e the part of it | ceptions deliveries bo
s journey to the recipio | und for the city
ent of the delivery. | | | | | Travelwest
Bristol Bath Freight
Consolidation Centre | 70% to 80% redu
meant that for ev | ction in the numl
very 10 vehicles th | re was initially set up as
per of onward trips was s
at made a delivery to th
ycling. This has only rec | seen by the freight on cen | consolidation scl
tre, just 2 or 3 or | heme subsid
nward journe | ised by Br
ys to the o | istol City Council
entral area were | to serve the c
made. The re | entral area between 2
turn trip provided the | 004 and 2018. This | | | | | CoMoUK
Mobility Hubs
Guidance | of people with th
distribution acros | e services that th
ss a local area. Fu | | ed on their daily jou | rneys. One such | service that | could be p | rovided is a mic | ro-consolidatio | on hub where freight o | an arrive for | | | | Major Market
Failures | Elcidis UCC
Urban consolidation
Centre
[La Rochelle] | Guidance Gistribution across a local area. Furthermore, the coincidence of the movement of goods and people also offer an opportunity for travellers to access click-and-collect services and make use of parcel lockers. La Rochelle Urban Community has been implementing a last mile urban freight delivery service using electric vans and trucks for more than 15 years, based on receiving conventional heavy goods vehicles (HGVs) and transferring goods to electric vehicles to make the last mile delivery. The assessment on the freight movements captured by the Elcidis UCC revealed that the service is not fully delivering the expected environmental and financial gains (capturing 100 freight movements per day out of 670 (15%) in the city centre generated by freight carriers - or 4% of 2,288 movements per day overall). As such, the business model is proving to be unprofitable, and unsustainable. Reasons for failure included: Location – not being located on strategic routes in La Rochelle, Regulatory framework - does not incentivise the use of the UCC, or indeed electric vehicles. Complementary functions - No additional services beyond the distribution of goods are offered (e.g. recycling processing facility for reverse flows) | | | | | | | | | | | | | | Opportunities | Links with mobility hu | | | erface with space capac | | ort, consolidatio | n as a means | of re-mo | ding for the last r | mile of delivery | / | | | | | Barriers | Extra cost incurred as | a result of additiona | l handling of goo | ds whilst any approach s | should look to be in | dustry led and e | mbedded to | ensure sy | nergies with bus | iness supply c | hains | | | | | Local Relevancy | intermodal interchang
of the cordon applied | e points in both ren
for managing HGV t | note and hyper u
raffic in Dublin Ci | rly conducive to consoli
rban locations. This coul
ty Centre. Ideally the rin
uable insight to test pro | d include the M50, t
gs of consolidation | where fulfilment
would also be lir | t and distribu
nked. A num | tion centr
ber of pilo | es are already es
t initiatives, invo | tablished by ir
Iving six estab | ndustry
leaders, as wel
lished third partly logi: | l within the vicinity | | | | | | | | | ct on Freight | | | | · · | | | | | | | Economy | | | | Environment | | | | Sc | ciety | | | | | | | | times, optimised use of | | ion and Max | | | | | Med Im | prove the safety | | o reduce the number | of accidents Me | | | | | l opportunities to addre | | | | | | | | | | | | | | | | ivity seamless intermod
national freight moveme | | | Urban realm
Minimising the intrusiv
amenity and local, prot | | transport on visu | ual | Max Be | | | use planning, develop
better freight data | oment, Ma | | | | SUSTAI | | stment
eeded | LOW | Se | ector | Procurement | Actors | Public | /Privat | te Risk
Level | Low | 4Rs | Re-mode, Re | e-duce | |------------------------|--|--|--|-------------------------|------------------------------------|---|---|---------------|----------------------|---|------------------------------------|---|------------------------------------|--------| | | Starting with in house | | _ | | | ensure these are 'green' and
ry and opportunities for re-n | | | | Cat | egory | Demand N | Management | | | Definition:
[Trend] | leverage a wider benef | it pool, inclu
onomic outl | uding supportin
look of the town | g SMEs, | conditioning livi | ing wages and ultimately he
procurement should also be | lping to improve th | ne social, | | Geog | raphical
cability: | (| • | | | Best Practice | | | | | | U | se Cases | | | | | | | | | | Preston Model Community Wealth Building [Preston, Lancashire] | wider Lar
around P | ncashire area. Ti
Preston and to th | he city co
ne privat | ouncil is commit
e sector. Comm | e council, its anchor institution
ted to implementing this ap
unity wealth building offers
in productive economic acti | oproach and, as the
an opportunity for | local peop | ader" fo
de to ta | r the city is promot
ke back control, to | ing the concept
ensure that the | to other anchor insti
benefits of local grow | itutions in and
wth are investe | l | | | Joint Procurement
Ryedale, Selby and
Scarborough Councils
[North Yorkshire] | tender published on behalf of all participating authorities with aggregation taking place in the supply chain during delivery. The Councils of Ryedale, Selby and Scarborough jointly spend £53 million every year on the supplies, services and works needed to deliver services to public of all areas. How well these goods are procured to those requirements has a critical impact on performance and ability to provide value for money Sustainable Procurement In order to reduce their transport-related impacts and achieve global climate objectives, member companies of the Clean Cargo Working Group have co-developed a framework that will enable companies to effectively benchmark themselves against their peers and to evaluate their progress in supplier management, within the context of sustainability practices in logistics. | | | | | | | | | | | | | | | Sustainable
Procurement
Framework
Clean Cargo UK | Sustainable Procurement Framework Prompanies of the Clean Cargo Working Group have co-developed a framework that will enable companies to effectively benchmark themselves against their peers and to evaluate their progress in supplier management, within the context of sustainability practices in logistics. Shippers advance their supplier management programs by identifying key activities and best practices that they can implement to improve their own sustainability performance and foster | | | | | | | | | | | | | | Opportunities | Reducing freight miles | and maxim | nising vehicle pa | ayloads b | y securing cons | tant demand. Opportunities | s to re-mode freight | t vehicles | by sour | cing locally and en | bedding this in | contractual agreem | ents | | | Barriers | Potential to conflict wit | th competit | tion authority is | seen to f | avour local com | panies; but can be avoided l | by breaking up larg | je contrac | t orders | into smaller reque | ests under a pro | curement threshold. | | | | Local Relevancy | opportunities and colla | ating togeth
Impanies su | ner local spend a
uch as Accenture | and conti | ract conditions t | oss the GDA, starting first wi
to understand the extent to
setc to assess the impact tha | which procuremen | ıt is sustair | nable a | nd reducing freigh | t trips/miles/den | nand. This discussion | can expand to | 0 | | | | | | | | Impact on Freight | Objectives | | | | | | | | | Economy | | | | | Environmen | t | | | | Society | | | | | | | times, optimised use of t | | | Max | | | | | Max | | | o reduce the number | r of accidents | Min | | | d opportunities to addres | and a reduction in other forms of pollution and intrusive activities involving goods vehicles Greenhouse gas emissions Portunities to address skills shortages, support and availability, infrastructure provision Max Greenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve net-zero by 2050 Min Min Min Min Min Min Min Mi | | | | | | | | | | | | | | | | nes, optimised use of fleets, delay mitigation and in connectivity to save time and costs Reduce the impact of the sector through air quality improvements and a reduction in other forms of pollution and intrusive activities Greenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve Max Reduce the impact of the sector to reduce the number of accidents involving goods vehicles Community disturbance Reduce the impact of freight on communities, noise levels, air | <u></u> | | | <u></u> | | | | | |------------------------|---|--|-----------------------------------|---|--|---------------------------------------|--------------------------------------|-----------------------|--------------------|------------------------|--|---------------------|-----|--|--| | GREEN | ER FLEETS | Investment
Needed | Low-High | Freight
Sector | Road Freight | Actors | Businesses,
Bodies, Pub | - | | Medium | Scheme
Maturity: | Deployed | d | | | | | | | | | orporate procurement p | | | | Car | tegory | Procu | rement | | | | | Definition:
[Trend] | complementary chargi | ing infrastructure in f | futuire investm | ent priorities and | stalyse shift towards cles
I strategies respectively.
shift towards a zero-car | Industry is incre | | 1000 | n Geog | raphical
icability: | (| • | | | | | Best Practice | | | | | | Use Cases | | | | | | | | | | | | Cleaner Fleet Policy
Derby City Council
[UK] | year. The policy int
changes across lov | troduces a 'Lov
w emission vel | v Ernission Hierar
nicle technologies | et of 48 vehicles (cars &
chy of Vehicle Procuren
s. The intention is to lead
al and national policy an | nent'; providing
d the way locally | the flexibility to
as a major emp | take adv
loyer and | antage of future : | shifts in the oper | ational, financial and | environmental | | | | | | Green Fleet Review
Commercial Group
[UK] | reduce fleet carbo
vehicles with almo | n emissions by
st 90 per cent | 50 per cent duri
of the organisation | office services company
ng 2007. This was partly
on's CO2 emissions cam
o a more fuel efficient, o | attributed to a
e from its owne | commitment to
d fleet vehicles. | a compa | ıny wide carbon e | emissions reduct | ion after an extensive | e review of its fle | | | | | | EV Fleet Transition
Lime
[US] | et Transition Lime Lime have pledged to transition its entire fleets to electric by 2030. This is well over 100,000 owned and leased trucks, vans and vehicles used for moving around scooters and associated equipment as part of its commitment to the Climate Group VIO0. It is working with Ceres to advocate policies internally that will support the transition. Lime are the first micromobility provider engaged in the programme
and view its fleet transition in the context of improving infrastructure capacity and delivering its local fleet management strategy. It initial started its | | | | | | | | | | | | | | | Opportunities | Opportunity for organis | isations to fulfil their (| CSRs and respo | and to the need t | o transition from diesel | and petrol vehic | les (linked to na | tional po | licy) towards elec | tric and alternat | ve fuels on a compre | hensive scale. | | | | | Barriers | May appeal to larger or | rganisations with sigr | nificant fleet m | anagement resp | onsibilities but more dif | ficult for SMEs to | o achieve, espec | ially sole | traders. | | | | | | | | Local Relevancy | with a larger proportion | n of the GDA covering
al policy being put in | g urban areas,
place for alten | the public sector
native fuel infrasti | s than 2 per cent of local
should look to lead by e
ructure. Dublin City Cou | example; starting | g first with LGVs | and ther | n exploring the de | evelopment of hy | drogen or CNG pow | ered fleet policie | ies | | | | | | | | | Impact on Freig | ht Objectiv | /es | | | | | | | | | | Economy | | | | Environment | | | | : | Society | | | | | | | | | times, optimised use of f | | nand Max | | - | | | Max | | - | reduce the number | ofaccidents | Min | | | | | l opportunities to addres | in connectivity to save time and costs and a reduction in other forms of pollution and intrusive activities involving goods vehicles | | | | | | | | | | | | | | | | ivity seamless intermoda
national freight moveme | | local, Min | | intrusive impact of freig
cal, protected settings | ght transport or | ı visual | Min | | | use planning, develop
petter freight data | oment, | Min | | | | SHARE | D ASSETS | Investment
Needed | Low | Freight
Sector | Road, Rail, Air, Sea | Actors | Businesses
Bodies, Put | | er en | High | Scheme
Maturity: | Deploye | ed | | | |-----------------|--|--|-------------------------------|---------------------------------------|--|--------------------|---------------------------|-----------|---|---------------------|---|-----------------|----|--|--| | Definition: | approach to cost saving | s and efficiencies. Can | work to sup | port economies | ring to achieve online de
of scale or provide low co | st access into o | onsolidation/fu | lfilment. | to | gory | Gro | upage | | | | | [Trend] | _ | emium due to the rise | in e-comme | _ | d many aspects of the do
s and availability of land i | | | | . Geogr | aphical
ability: | *** | | ı | | | | Best Practice | | | | | | Use Cases | | | | | | | | | | | | Shared Fulfilment
Ocado & Morrisons
[South East London] | necessary to fulfil on | line orders fr | om its stores wit | isons' online grocery deli
th the aim of offering onli
pand area coverage – inc | ine services in a | reas not curren | tly servi | ed by a customer f | ulfilment centr | e. Morrisons has also | recently agree | ed | | | | | Flexible Warehouse Peel Ports [Liverpool] | provides flexibility in space allocation with rental space covering pallets or other standardised module designs. The digital sharing platform allows utilisation of the vacant warehousing space where mixing diverse sectors with different seasonality peaks supports flexibility. Peel Ports home to the £400m Liverpool2 terminal is an example of a new container shipping with advanced facilities, port-side storage and the flexibility to meet the demands of each and every customer, through flexible warehousing solutions. Opened in 2020 with easy access to Germany's A1 and A2 autobahns and proximity to courier and express companies with adjacent land available for potential future expansion. The multi user warehouse operates a pay-as-you-use billing model, reducing user costs and assisting budgeting and cash flow and is closely aligned to manufacturing operations within the wider | | | | | | | | | | | | | | | | Multi User Warehouse
Imperial Logistics
[Germany] | i User Warehouse perial Logistics Opened in 2020 with easy access to Germany's All and A2 autobahns and proximity to courier and express companies with adjacent land available for potential future expansion. The multi user warehouse operates a pay-as-you-use billing model, reducing user costs and assisting budgeting and cash flow and is closely aligned to manufacturing operations within the wider industrial zone (Imperial is handling inventory control for outbound lines, as well as providing frequent trailer shuttles to and from manufacturing sites). The lean management | | | | | | | | | | | | | | | Opportunities | Maximising the use of s | urplus warehousing ca | apacity and c | ptimising use of | new facilities at strategi | c locations for fr | eight moveme | nts to in | prove site, travel ar | nd cost efficien | cies | | | | | | Barriers | High capital cost to inve | st or retrofit a facility (| who pays). A | s a burgeoning o | concept, there may be a | demand by com | panies to see s | supply of | nain transparency. L | and also has to | be available in key lo | ocations | | | | | Local Relevancy | shared assets bring for a | allowing smaller organ
iated with wholesale s | isations to e
torage and c | nter the market
listribution (band | knowledges both the risi
to further boost the role
ded around the M50) wit
arbon last mile logistics. | of freight and lo | gistics as a key | econon | ic driver for the city | region. There | are a number of exar | nples of shared | ď | | | | | | | | | Impact on Freig | ht Objectiv | res | | | | | | | | | | Economy | | | | Environment | t | | | | Society | | | | | | | | | times, optimised use of fl | | and Max | | | | • | Med | Improve the safety | | o reduce the number | r of accidents | Mi | | | | | imes, optimised use of fleets, delay mitigation and nain connectivity to save time and costs Reduce the impact of the sector through air quality improvements and intrusive activities Improve the safety of the sector to reduce the number of accidents involving goods vehicles | | | | | | | | | | | | | | | | | ivity seamless intermodal
national freight movemer | | al, Max | | e intrusive impact of freig
ocal, protected settings | ght transport on | visual | Min | _ | _ | use planning, develo
better freight data | pment, | Mi | | | | DRIVER | TRAINING | Investment
Needed | Low-Med | Freight
Sector | Road Freight | Actors | Businesses
Bodi | - | Risk
Level | Low | 4Rs | Re-duce | ie | | | |------------------------|---|---|--|---------------------------------------|---|---------------------------------------|---|------------------------------|------------------------------------|-------------------------------------|---|--------------------------------------|------|--|--| | Definition:
[Trend] | The provision of training
programme would be a
with improving vehicle of
technical and behaviour | imed at drivers of H
utilisation, accident | GVs and vans a
rates, vehicle do | nd is designed to
wntime and ma | o improve overall fuel c
aintenance costs. Often | onsumption, wh | ilst assisting flee | t managers | Geog | egory
raphical
cability: | Raising E | Best Practice | | | | | Best Practice | | | | | | Use Cases | 5 | | | | | | | | | | | Driver Training
Carlsberg
[UK] | generated by their
telematics (monitor | r vehicles,
all of a
ors drivers' perfo | which are 7.5 to
ormance on a da | over 8.5 million miles e
nnes or above, mostly 2
aily basis and gives live i
arlsberg have saved 502 | 6 tonne rigid tru
updates via a we | cks. On this basi
to portal] helping | s, emphasis
g to provide | was place on d
feedback on di | river engagem
riving efficiency | nent and empowerme
y alongside providing | ent with the use
training (course | e of | | | | | Young Driver Academy
British Gas
[UK] | ritish Gas [UK] Created to also improve the reputation and image of the company as well as meeting its CSR objectives. The academy is mandatory for 12 months under an apprenticeship produced by Fleetmaster and is ran in a structured manner covering 9 units, including eco-driving training which is subsidised through the Energy Saving Trust. Overall, the academy has helped see a 14% reduction in fuel consumption/wear and tear, a 30% reduction in collision rates (despite fleet growth) and positive feedback from engaged drivers on the course. The organisation experienced rapid expansion and formed a 'Green Team' to assess environmental performance; identifying advanced driving training as key part of employee inductions alongside a handbook to develop a sustainable driving culture and technology to monitor data/feedback. Overall, fleet speeding offences reduced by over 15,000 in 2014 alone whilst the | | | | | | | | | | | | | | | | Advanced Driver
Training
Drive DeVilbiss
[UK] | 14% reduction in fuel consumption/wear and tear, a 30% reduction in collision rates (despite fleet growth) and positive feedback from engaged drivers on the course. In organisation experienced rapid expansion and formed a 'Green Team' to assess environmental performance; identifying advanced driving training as key part of employee inductions alongside a handbook to develop a sustainable driving culture and technology to monitor data/feedback. Overall, fleet speeding offences reduced by over 15,000 in 2014 alone whilst the average distance, percentage speeding and vehicle idling times dramatically fell by 44% in the same year. Fuel use also declined year on year from 3,960 litres per vehicle in 2012 cq. 31,145 | | | | | | | | | | | | | | | Opportunities | Considerable cost saving | g benefits to busine | sses within road | l freight alongsi | de better driver recruitr | ment and retent | ion levels. A stro | ng case for | schemes to tie i | n to meeting b | ousinesses CSRs. | | | | | | Barriers | Can often be associated | l with larger fleet op | erators and org | anisations who | have significant budget | ts– in contrast to | smaller operato | rs who may | also lack the ti | me to invest in | training and fleet rev | iews | | | | | Local Relevancy | With such as large prop
to save costs associated
virtues of the scheme (p
advantageous, a national | l with fuel consumpt
ootentially suppleme | tion and vehicle
ented by financi | maintenance that
al incentives] co | hrough a structured tra
ould mark a realistic ste | ining programm
p in the roadma | ne. Like with mar
p towards decar | ny accredita
bonising the | tion and recogn
road freight se | nition schemes
ector. Whilst a l | s, boosting uptake an | d promoting the | ne | | | | | | | | | Impact on Freig | ght Objecti | ves | | | | | | | | | | Economy | | | | Environment | : | | | So | ciety | | | | | | | | | times, optimised use of flo
hain connectivity to save | | in and Max | | pact of the sector throu
n in other forms of pollu | | • | Max Im | _ | | to reduce the number | r of accidents | Max | | | | | opportunities to address | n connectivity to save time and costs and a reduction in other forms of pollution and intrusive activities involving goods vehicles | | | | | | | | | | | | | | | _ | ivity seamless intermodal
national freight movemen | | local, Min | | e intrusive impact of frei
ocal, protected settings | | n visual | Max Be | | | use planning, develo
, better freight data | pment, | Min | | | | | ON SCHEMES | Investment
Needed | Low | Freight
Sector | All Road Freight | Actors | Industry Bodies, Pu
Sector, Businesse | | COAV | 4Rs | Re-mode, Re-
duce, Re-route,
Re-time | | |--|--|---|---------------------------------|--|---|------------------|---|--|---|-----------------------|--|--| | Definition:
[Trend] | credentials amongst po
cost are key operationa | otential clients and su
Il drivers, fleet operato
ial sustainability. Equi | upply chain p
ors, suppliers | n accredited or recognised member of an industry body and scheme to help boost their
in partners. Whilst improving supply chain visibility, refining efficiency, and minimising
iers and operators recognise the virtues of setting high environmental, safety and vehicle
authorities and industry bodies are able to raise standards and help generate valuable | | | | | Category
eographical
oplicability: | Raising Best Practice | | | | Best Practice | | Use Cases | | | | | | | | | | | | | Fleet Operator Recognition Scheme FORS The Fleet Operator Recognition Scheme (FORS) is a voluntary accreditation scheme for fleet operators which aims to raise the level of quality within fleet operations, and to demonstrate which operators are achieving exemplary levels of best practice in safety, efficiency, and environmental protection. FORS helps reduce work related road risk (WRRR) and demonstrate commitment to exceeding the industry standard. Already well stablished across Ireland with accreditation delivered through C Track (Inseego) but promotion is key. There are three accreditation that can be attained for hauliers, suppliers and carriers of goods. | | | | | | | | | nd demonstrates to a | | | | | EcoStars Fleet Recognition Scheme ECOSTARS ECOS tars has been adopted around many UK and European cities with several membership options available to new organisations, businesses and local authorities. The aim of the scheme is to help fleet operators improve efficiency, reduce fuel consumption & emissions and make cost savings. This type of scheme seeks to both accredit /recognise the impetus taken by industry to improve safety, environmental standards and provide further, practical assistance to members. Implementing the key measures recommended by ECO Stars, a typical commercial vehicle operator could expect to reduce fuel consumption at least 5% in the first year or up to £2,450 per vehicle in fuel costs. The scheme is managed by consultants, TTR. | | | | | | | | | | petus taken by
rs, a typical | | | | Logistics Emissions
Reduction Scheme
Logistics UK | A voluntary industry initiative to record, report and reduce transport emissions to feed into a public database (open source) to help report the sector contribution towards national emission reduction targets. The scheme is accessible to a company with a minimum of one vehicle and is designed to raise standards across the industry and awareness of the challenges and opportunities faced to meet targets. Such a scheme helps build awareness and promotion of environmentally friendly practices across the industry; operators can demonstrate their green credentials which hold weight with buyers, government and industry bodies. The scheme is also pivotal for data collection and
using this to inform future decision making. | | | | | | | | | | | | Opportunities | Can help raise industry | raise industry standards to support businesses efficiency and meet wider social and environmental aims. The structure of accreditation & recognition schemes is already well established in some cases. | | | | | | | | | | | | Barriers | Extra energy will need t | d to be expended to engage with smaller operators, who may be less inclined or able to raise standards due to financial and time constraints/commitments | | | | | | | | | | | | Local Relevancy | aimed at both large and
the environmental (em | Freight standards and best practice can be scaled up with support from major trade bodies such as the Irish Road Haulage Association and the promotion and awareness of accreditation and recognition schemes aimed at both large and small fleet operators across haulage and freight forwarding sub sectors of road freight transport. The push towards the professionalisation of the sector will have positive impact on reducing the environmental (emissions through fuel efficiency) and social (road safety and accidents) impacts of the sector whilst bringing about positive benefits to individual organisations and businesses who can benefit from additional exposure to market, access to training and resources. The collection of data, in some schemes, will help contribute towards a better, more robust database for making informed freight decisions. | | | | | | | | | | | | | | | | | Impact on Freig | ıht Objecti | ves | | | | | | | Economy | | | | Environment | | | | Society | | | | | | Freight efficiency
Improved journey times, optimised use of fleets, delay mitigation and
improved supply chain connectivity to save time and costs | | | | Air quality Reduce the impact of the sector through air quality improvements and a reduction in other forms of pollution and intrusive activities | | | | Safety Improve the safety of the sector to reduce the number of accidents involving goods vehicles | | | | | | Improved jobs and | Industry contribution Improved jobs and opportunities to address skills shortages, support for inward investment, land availability, infrastructure provision | | | | Greenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve net-zero by 2050 Max | | | Reduce the in | Community disturbance Reduce the impact of freight on communities, noise levels, air quality and informal overnight lorry parking | | | | | | ivity seamless intermoda
national freight moveme | | ocal, Min | | e intrusive impact of freig
ocal, protected settings | ght transport or | t transport on visual Max Better integrate freight into land use planning, development of the construction and servicing plans, better freight data | | | | opment, Min | | | Streetscape & Building Investment Needed | | Low | Sector | Planning Policy/
Design Guidance | Actors | Public/Priva
/Third Sect | | Medium | 4Rs | Re-route, Re-tim
Re-mode | | | | |--|--|--|-----------|---|---|-----------------------------|-------------|---|--|-----------------------------|----------------------|--|--| | | _ | _ | | centres and city centres can ignore the need for delivery and servicing of business and | | | | | Category | | Land Use Planning | | | | the rise in vehicle traffic generated by the boom in | | | | nderstanding of how a street or area functions as a collective and may underappreciate -commerce, the frequency of goods deliveries and the loading/unloading requirements. s through to fulfilment centres, must also be futureproofed and responsive to change. | | | | | Geographical
Applicability: | | | | | | Best Practice | Use Cases | | | | | | | | | | | | | | | Global Street Design Guide (2022) Virtual A virtual design guide primarily focused on creating good, human scale places and with a wider appreciation of the different uses of a street, including operational practices and the use the kerbside. Emphasis, in this instance, is placed on kerb regulation, applying dynamic forms of pricing and thinking about broader district level approaches to parking. Design 'control are also referenced in relation to how streets perform different functions over the course of the day with guidance being given on undertaking counts. There is also specific sections or designing for freight and service operators, including freight management and safety. | | | | | | | | | | g. Design 'controls' | | | | | Gloucestershire Manual for Streets (2020) Gloucestershire Gloucestershire Gloucestershire Reference is made to construction logistics for developments and how this needs to be adequately reflected in a Transport Assessment (TA) including potential impact and mitigation. Local site conditions will dictate the range of matters. Adequate space for heavy goods, delivery and public service vehicles must be made within the site boundary, which should not conflict with the proposed parking arrangements. Reference is made to provision for servicing and deliveries for car free developments and how the must always be made within the site, unless there is a strong fallback position which would remove this requirement. | | | | | | | | | | | | | | | Adaptative Strategies London Mayor of London Mayor of London have approached the need to provide for delivery and servicing activity. The guidance follows an earlier review of London's high streets as part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets to adapt and diversify. In other words, it sets the tone for retrofitting current streetscapes based on how they are used now and in the future. There is a part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets are used now and in the future. There is a part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets are used now and in the future. There is a part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets are used now and in the future. There is a part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets are used now and in the future. There is a part of the Mayor's Good Growth by Design programme and has the aim of promoting and supporting a framework for high streets are used now and in the future. There is a part of the Mayor of London framework for high streets to adapt and support in a framework for high streets are used now and in the future. There is a part of the Mayor of London framework for high streets to adapt and support in a framework for high streets are used now and in the future. There is a part of the Mayor of London framework for high streets to adapt and support in a framework for high streets are used now and in the future. There is a part of the Mayor of London framework for high streets to adapt and support in a framework for high streets are used now and in
the future. There is a part of the Mayor of London framework for high streets to adapt and support in a framework for high streets are | | | | | | | | e. There is a particula
o the role of the | | | | | | | Logistics Buildings of
Tomorrow
JLL, Virtual | well as urbanisation and sustainability. It sets out numerous exemplars to follow and the Well Building concept alongside 10 key attributes that must start to be considered as part of ne | | | | | | | | | | | | | Opportunities | To help embed a 'think | To help embed a 'think freight' approach into the process of planning new developments and retrofitting neighbourhoods from both a developer perspective and also as part of development control checks. | | | | | | | | | | | | | Barriers | | | | | being loosely defined and ea | - | _ | | | | | | | | Local; Relevancy | The Design Manual for Urban Roads & Streets (DEMURS) makes very limited reference to the role of freight, delivery and servicing as part of the guidance informing street design and placemaking. Consequently, there is limited onus on properly accounting for vehicles within the design of places, especially in the context of increased e-commerce and LGV movements within neighbourhoods and local service centres. Development control processes should give due consideration to how delivering and servicing is physically and operationally accountable by developers whilst any retrofit to streets through placemaking scheme should also pay attention to the needs (and expectations) of businesses and residents requiring front door access particularly. | | | | | | | | | | ervice centres. | | | | | | | | | Impact on Freight | Objectives | | | | | | | | | Economy | Economy | | | | Environment | | | | Society | | | | | | Freight efficiency
Improved journey times, optimised use of fleets, delay mitigation and
improved supply chain connectivity to save time and costs | | | n and Max | | npact of the sector through a
on in other forms of pollution | | | Safety
Improve the safe
involving goods v | - | o reduce the numbe | er of accidents Ma | | | | Improved jobs and | Industry contribution
Improved jobs and opportunities to address skills shortages, support
for inward investment, land availability, infrastructure provision | | | Greenhouse gas emissions Reduction in greenhouse gas emissions from the sector to achieve net-zero by 2050 | | | achieve Max | Community disturbance Reduce the impact of freight on communities, noise levels, air quality and informal overnight lorry parking | | | evels, air Ma | | | | _ | Connectivity Improved connectivity seamless intermodal activity to support local, national and international freight movements across the area | | | Urban realm Minimising the intrusive impact of freight transport on visual amenity and local, protected settings | | | al Max | Placemaking Better integrate freight into land use planning, development, construction and servicing plans, better freight data | | | | | | WSP House 70 Chancery Lane London WC2A 1AF wsp.com