Punctuality Overview

Cululity is a KPl (Key Performance Indicaton) of the performance of Dublin Bus, as part of the terms of thei PSO contrit wit in NTA.
For the purpose of measuring punctuality, Dublin Bus routes are divided into two groups - Low Frequency Routes and High Frequency Routes. Further details for each group
are provided below.
The following pages detail the Punctuality and Regularity performance achieved by Dublin Bus for each relevant period.

Low frequency Routes are defined as services which operates less than 5 times per hour on a weekday, outside the peak periods.

Low Frequency Punctuality:

The Punctuality of Low Frequency Routes is calculated as follows:
Punctuality $(\%)=\frac{\text { Number of Actual Departures on Time }}{\text { N }} \times 100$ Number of Actual Departures
Dublin Bus must achieve the Punctuality Standards set out in the table below for Low frequency Routes

Period	2021/2022	2023
P1, P2, P3, P4, P5 (Late Winter / Spring)	*Route Specific Minimum Performance Punctuality Standards Applied	*Route SpecificMinimumPerformancePunctuality y tandardsApplied
P6, P7, p8, P9		
(Summer)		

From 2020, For each full 1% of departures for a Route below the Punctuality Standard in a Reporting Period, a Punctuality Deduction equivalent to 0.2% of the Maximum Period Payment for that Route as outlined in Schedule 20 shall be made by the Authority
$\stackrel{\text { Notes: }}{ }$ The Number of Actual Departures is the total number of bus departures from individual bus stops, along all routes combined for all sevicices during the relevant period.
The Number of Actual Departures on Time is the total number of "on time" bus departures from individual bus stoss, along all routes combined for all services during the relevant period - where "on time" is defined as a bus which departs from a bus stop not more than one minute early or not more than five minutes and fify nine seconds late when compared to the scheduled departure time.
The data has not been adjusted for first and last stop time recording issues. These can arise, for example, when a bus is
recorded leaving the first st stop to allow passengers on board, or where bus is not recorded arriving on time at final stop because stop is occupied by another bus waiting to enter service. It is estimated that 2% of all recorded stopping times for journeys on the Dublin Bus PSO network are recorded at first or last stops, and therefore prone to this error, resulting in lower recorded punctuality than may
actually be the case.
Period 1 (2020) is the first Period where region specific minin
breakdown by MPS category is outlined on the following page.
Covid-19 Note: Applicable from 16 th March 2020 to the end of $P 32021$, te Purctulity Standard for on tine sevices according to the approved schedule $(-1$ minute to $+5: 59$ minutes of schedule) was reduced by 10% compared to the contractual standards legg. an original standard of 65% would reduce to 55%. The Punctuality Performance Payment and the Punctuality Incentive Payment were reduced to one half of amounts stated in the operating contract. The Punctuality
Standard for on time senices acording to the aproved shedule -1 minute to to $5 \cdot 59$ minutes of schedule) was reduced by Standard or on time eevices accorang to the epproved schedue
5% compared to to the contractual standards for for P, $P 5$ \& $\& 6$ 6 2021 .
As with many industries, public transport operators are experiencing significant challenges in reccuiting qualified staff following the economic and social constraints connected to the CoviD-19 pandemic. The public transport industry has been particularly hard.-hit as operators attempt to return to pre-pandemic levels of activity as well as delivering intended service
improvements such as the Busconneets Network Redesign and Connecting reeland programmes. These issues are further improvements such as the Busconnects Network Redesign and Connecting Ireland programmes. These issues are further
exacerbated when existing staff must also be absent at short notice while following HSE Euidelines after contracting covio-19 or developing other illnesses. These challenges have an impact on Lost Kilometre Rates on all routes and also on Excess Waiting Times on high frequncy routes. The Authority and the operators have been working to try to ensure that such cancelations are minim
on a route operate.

High Frequency Routes are defined as services which operate at a frequency of 12 minutes or greater on a weekday, outside the peak 123. These routes are as follows:

-123	- 140	- 16	-4	-9
	-	-	- 40	
130	- 15	$\cdot 3$	- 46	

High h requency Reqularit

Migh Frequency Routes differ from Low Frequency Routes, as passengers on High frequency Routes are less likely to base their jurney on the bus schedule and are instead more likely to just turn up at the bus stop and wait for the next bus to arrive. These passengers ale enerally more concerned wind us is running to schedule.
this basis, the NTA has introduced a means of measuring regularity of High Frequency Routes called Excess Wait Time (EWT). This metric provides a measure of the average time a passenger must wait tor the next high frequency bus, in excess of the wait time which would be
expected as per the schedule for that route - i.e. if you are a passenger who arrives at a stop for a high frequency bus route withou hecking the schedule, the EWT will calculate how much longer you have to wait for the next bus, in comparison to a baseline situation here all buses are calculated to the timetabled gap (headway) between services. Up until $\rho 9$ 2018, the punctuality methodology for low equency routes was also applied to to high frequency routes.
blin Bus EWT KPI deductions became live in $Q_{1} 201$.
Period 1 (2020) is the first Period where route by route specific minimum performance EWT standards apply. A full region breakdown by of the Maximum Period Payment for that Route as outlined in Schedule 20 shall apply.

igh frequency Reqularity

The Regularity of High frequency Routes is calculated as follows:
EWT (min) = Average Actual Waiting Time (min) - Average Planned Waiting Time
blin Bus must achieve the Regularity Standards set out in the table below for High Frequency Routes

P1 2020-P6 2021 EWT KP1		
Category	Route	MPS
A	13	2.3
	16	2.3
	27	2.3
	39A	2.3
	40	2.3
	46 A	2.3
в	9	2.0
	14	2.0
	15	2.0
	123	2.0
	145	2.0
c	1	1.7
D	4	1.4
	130	1.4
	140	1.4

2021-2023
 Dublin Bus Direct Award Contract
 Low Frequency Punctuality Minimum Performance Standards

Low Frequency Routes are defined as services which operate less than 5 times per hour on a weekday, outside the peak
Route By Route MPS - P1 2020 to P6 2021
Category A - MPS $=\mathbf{6 4 \%}$ (${ }^{*} 54 \% / 59 \%$)
25D, 15D, 77A, 7B, 41D, 16D, 7, 83, 33, 70D, 25B, 7A, 65, 25A, 38B, 39, 56A, 84, 49, 65B, 116, 70, 44, 47, 38, 37, 61, 67, $66,155,83 \mathrm{~A}, 11,38 \mathrm{D}, 68,122,46 \mathrm{E}, 38 \mathrm{~A}, 66 \mathrm{E}, 41 \mathrm{C}, 41,31 \mathrm{~B}, 7 \mathrm{D}, 31 \mathrm{~A}, 15 \mathrm{~B}, 16 \mathrm{C}$

Category B - MPS = 70\% (*60\%/65\%)

$118,142,84 \mathrm{~A}, 54 \mathrm{~A}, 31 \mathrm{D}, 68 \mathrm{~A}, 151,69,32,25,150,66 \mathrm{~B}, 41 \mathrm{~B}, 40 \mathrm{~B}, 42,15 \mathrm{~A}, 66 \mathrm{~A}, 43,27 \mathrm{~B}, 31,26,44 \mathrm{~B}$

Category C - MPS = 76\% (*66\%/71\%)

42D, 29A, 40D, 79, 53, 79A, 120, 27A, 40E,53A, 14C

Express \& Peak Services - MPS $={ }^{* *}$ Various

$33 E, 51 \mathrm{X}, 67 \mathrm{X}, 77 \mathrm{X}, 66 \mathrm{X}, 25 \mathrm{X}, 39 \mathrm{X}, 69 \mathrm{X}, 41 \mathrm{X}, 32 \mathrm{X}, 84 \mathrm{X}, 27 \mathrm{X}, 33 \mathrm{X}, 51 \mathrm{D}, 33 \mathrm{D}, 68 \mathrm{X}$

Covid-19 Note: Applicable from 16th March 2020, the Punctuality Standard for on time services according to the pproved schedule (-1 minute to $+5: 59$ minutes of schedule) was reduced by 10% compared to the contractual tandards (e.g. an original standard of 65% would reduce to 55%). The Punctuality Performance Payment and the Punctuality Incentive Payment were reduced to one half of amounts stated in the operating contract.
** The MPS for Express \& Peak equals the punctuality rate achieved in a comparable period from the previous year, i. the MPS for 33E in P2 2020 would equal the Punctuality rate achieved in P2 2019

Route By Route MPS - P7 2021 to P9 2023

Category A - MPS $=\mathbf{6 4 \%}$ (increased to $\mathbf{7 0 \%}$ from P4 2022 onwards)
5D 77A 7B, 16D, 7, 83, 33, 7A, 65, 38B, 39, 49, 65B, 116, 70, 44, 47, 38, 67, 66, 155, 83A, 11, 38D, 46E, 38A, 66E, 41C, 15B, 16C

Category B - MPS $=\mathbf{7 0 \%}$ (increased to 76\% from P4 2022 onwards)
$118,142,54 \mathrm{~A}, 151,69,32,25,66 \mathrm{~B}, 41 \mathrm{~B}, 42,15 \mathrm{~A}, 66 \mathrm{~A}, 43,27 \mathrm{~B}, 31,25 \mathrm{~A}, 25 \mathrm{~B}, 31 \mathrm{~A}, 31 \mathrm{~B}, 37,41,41 \mathrm{D}, 56 \mathrm{~A}, 61,68,84,122$, 25D, 7D, 7E,

> Category C - MPS $=76 \%$ (increased to 80% from P4 2022 onwards)
> $2 \mathrm{D}, 29 \mathrm{~A}, 40 \mathrm{D}, 79,53,79 \mathrm{~A}, 120,27 \mathrm{~A}, 40 \mathrm{E}, 53 \mathrm{~A}, 14 \mathrm{C}, ~ 26,31 \mathrm{D}, 40 \mathrm{~B}, 44 \mathrm{~B}, 68 \mathrm{~A}, 84 \mathrm{~A}, 70 \mathrm{D}, 150, \mathrm{H1}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H9}, 6, \mathrm{C} 1, \mathrm{C} 2$, C3, C4, C5, C6, L53, L54, L58, L59, P29, X25, X26, X27, X28, X30, X31, X32, 52, G1, G2, 60.

Express \& Peak Services - MPS $={ }^{* *}$ Various (80% from P4 2022 onwards)
33E, 51X, 67X, 77X, 66X, 25X, 39X, 69X, 41X, 32X, 84X, $27 \mathrm{X}, 33 \mathrm{XX}, 51 \mathrm{D}, 33 \mathrm{D}, 68 \mathrm{X}$

* From P1 2020 to P2 2022, the MPS for Express \& Peak equals the punctuality rate achieved in a comparable period
from the previous year, i.e the MPS for 33E in P2 2020 would equal the Punctuality rate achieved in P2 2019

Dublin Bus Direct Award Contract
Puntuality
2021

HIGH FREQUENCY PUNCTUALITY BY ROUTE - DUBLIN BUS (see note on interpretation of this data at bottom of table)

Category	Route	P9	P8	P7	P6	P5	P4	P3	P2	P1
A	13	2.27	2.12	2.79	2.41	1.98	1.81	1.78	1.77	1.90
	16	2.10	1.64	1.91	1.57	2.77	2.17	2.42	2.30	1.71
	27	3.06	2.48	3.51	3.95	3.67	3.31	3.60	3.88	2.52
в	39A	2.43	1.99	2.42	2.28	1.86	1.41	1.35	1.46	1.25
	40	1.23	1.21	1.83	1.34	0.94	0.95	0.86	0.97	1.02
	46A	2.29	2.89	2.48	3.11	2.56	2.40	2.19	2.35	1.89
	145	2.36	2.20	2.08	2.83	2.75	1.98	2.29	2.03	2.04
c	123	3.02	2.53	2.44	2.14	3.23	2.93	2.84	2.39	2.13
	14	2.58	2.62	1.97	2.54	3.28	1.82	2.32	2.25	1.52
	15	2.02	2.03	1.85	2.04	2.17	1.46	1.57	1.73	1.18
	9	3.16	1.87	2.30	2.33	2.03	1.45	1.27	1.46	1.36
D	1	0.90	0.81	1.07	0.57	0.92	0.37	0.54	0.56	0.40
	130	1.22	0.94	1.35	1.70	1.92	1.31	1.23	1.36	1.43
	140	1.67	1.21	1.30	1.11	1.15	0.88	0.81	1.11	0.71
	4	1.41	1.51	1.83	1.96	1.43	1.19	1.18	1.25	1.63
	N4	1.61	1.36	2.28	1.65	1.32	1.32	1.34	1.55	1.36

High Frequency Punctuality routes are measured by the Average Excless Passenger Wait Time (AEPWT). All units in the table above are in minutes.
This metric provides a measure of the average time in minutes a passenger must wait for the next high frequency bus, in excess of the wait time which would be expected as per the schedule for that route - i.e. if you are a passenger who arrives at a stop for a high frequency bus route without checking the schedule, the AEWPT will calculate how much longer you have to wait for the next bus, in comparison to a baseline situation where all buses are running "on time".

* Routes that have transitioned to Low Frequency Punctuality are denoted by 'LFR*' in the table

HIGH FREQUENCY PUNCTUALITY BY ROUTE - DUBLIN BUS (see note on interpretation of this data at bottom of table)

Route	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1
13	3.12	3.27	4.5	2.56	2.72	2.54	3.00	2.58	1.94	2.07	2.11	2.04	1.85
16	2.76	2.08	2.41	2.69	3.06	3.18	3.52	2.71	2.37	1.39	1.65	1.39	1.46
27	3.36	2.93	2.99	3.37	3.46	3.54	3.46	2.61	2.11	1.96	2.34	1.92	2.15
39A	2.14	2.23	1.83	1.83	1.66	2.17	1.97	2.41	1.45	1.16	1.30	0.99	1.00
40	1.87	1.95	3.58	3.58	2.66	2.87	3.76	3.34	2.61	2.30	2.39	2.28	1.85
46 A	2.54	2.89	2.97	3.39	3.22	2.38	2.38	2.20	1.92	1.74	1.64	1.36	1.30
123	2.96	3.22	2.96	3.53	3.64	3.80	3.83	2.45	2.53	1.53	2.09	1.94	1.82
14	1.85	2.18	1.81	1.84	1.56	1.47	2.00	1.72	1.34	1.08	1.34	1.19	0.81
145	1.90	2.63	2.04	2.43	1.71	2.38	2.29	1.95	1.54	1.54	1.53	1.25	1.14
15	1.65	1.84	2.07	1.75	1.31	1.52	1.47	1.25	1.02	1.15	1.31	0.96	0.96
9	2.88	2.51	2.15	1.97	1.60	2.09	1.99	1.97	1.39	1.31	1.26	0.83	0.87
1	0.41	0.41	0.46	0.68	0.80	0.50	0.72	0.47	0.50	0.61	0.68	0.56	0.45
130	1.37	3.2	1.76	1.57	1.85	1.64	1.73	1.64	1.14	1.61	1.81	1.73	1.28
140	1.35	1.00	0.92	0.89	0.97	1.04	0.87	0.96	0.96	0.84	1.18	0.94	0.74
4	1.83	2.50	2.65	1.62	1.76	1.81	2.08	2.01	1.32	1.33	1.36	1.00	1.46
N4	1.63	2.47	2.29	1.79									

High frequency Punctuality routes are measured by the Average Excless Passenger Wait Time (AEPWT). All units in the table above are in minutes.
This metric provides a measure of the average time in minutes a passenger must wait for the next high frequency bus, in excess of the wait time which would be expected as per the schedule for that route - i.e. if you are a passenger who arrives at astop for a high frequency bus route without checking the schedule, the AEWPT will calculate how much longer you have to wait for the next bus, in comparison to a baseline situation where all buses are running "on time".

* Routes that have transitioned to Low Frequency Punctuality are denoted by 'LRR*' in the table

HIGH FREQUENCY PUNCTUALITY BY ROUTE - DUBLIN BUS (see note on interpretation of this data at bottom of table)

High Frequency Punctuality routes are measured by the Average Excless Passenger Wait Time (AEPWT). All units in the table above are in minutes.
This metric provides a measure of the average time in minutes a passenger must wait for the next high frequency bus, in excess of the wait time which would be expected as per the schedule for that route - i.e. if you are a passenger who arrives at a stop for a high frequency bus route without checking the schedule, the AEWPT will calculate how much longer you have to wait for the next bus, in comparison to a baseline situation where all buses are running "on time"

* Routes that have transitioned to Low Frequency Punctuality are denoted by 'LFR*' in the table

